All Questions Topic List
Differential Equation Questions
Previous in All Question Next in All Question
Previous in Differential Equation Next in Differential Equation
Question Number 89205 by jagoll last updated on 16/Apr/20
2dydx=yx+(yx)2
Commented by john santu last updated on 16/Apr/20
y=vx⇒dydx=v+xdvdx2v+2xdvdx=v+v22xdvdx=v2−vdvv(v−1)=dx2x∫(12(v−1)−12v)dv=∫dx2x12ln∣v−1v∣=12ln∣x∣+cln∣1−xy∣=ln∣x∣+C±(1−xy)=kex1−xy=±kexxy=1±kex⇒y=x1±kex
Answered by 242242864 last updated on 16/Apr/20
letu=yx⇒y=uxdydx=u+xdudx2[u+xdudx]=u+u22u+2xdudc=u+u22xdudx=u2−u2xdu=(u2−u)dx2du(u2−u)=dxx2∫du(u2−u)=∫dxxconsider1(u2−u)tobechangetopartialfraction,1(u2−u)=1(u+1)(u−1)⇒1(u+1)(u−1)=A(u+1)+B(u−1)1=A(u−1)+B(u+1)1=Au−A+Bu+B1=u(A+B)+B−AB−A=1.........(i)A+B=0..........(ii)⇒A=−12,B=12⇒∫1(u2−1)du=12∫du(u−1)−12∫du(u+1)=∫dxx12ln(u−1)−12ln(u+1)=lnx+C12ln[u−1u+1]=lnx+C12ln[y−xy+x]=lnx+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com