Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 89273 by Ar Brandon last updated on 16/Apr/20

Evaluate ∫_0 ^1 (x^2 /(√(1+x^3 )))dx and given that I_(n ) =∫_0 ^1 x^n (1+x^3 )^(−(1/2)) dx  show that (2n−1)I_n =2(√2)−2(n−1) for n≥3.  Hence evaluate I_8 , I_7  and I_6

$${Evaluate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{2}} }{\sqrt{\mathrm{1}+{x}^{\mathrm{3}} }}{dx}\:{and}\:{given}\:{that}\:{I}_{{n}\:} =\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{n}} \left(\mathrm{1}+{x}^{\mathrm{3}} \right)^{−\frac{\mathrm{1}}{\mathrm{2}}} {dx} \\ $$$${show}\:{that}\:\left(\mathrm{2}{n}−\mathrm{1}\right){I}_{{n}} =\mathrm{2}\sqrt{\mathrm{2}}−\mathrm{2}\left({n}−\mathrm{1}\right)\:{for}\:{n}\geqslant\mathrm{3}. \\ $$$${Hence}\:{evaluate}\:{I}_{\mathrm{8}} ,\:{I}_{\mathrm{7}} \:{and}\:{I}_{\mathrm{6}} \\ $$

Answered by 675480065 last updated on 17/Apr/20

    evaluating the intergral:  ∫_0 ^1 (x^2 /(√(1+x^3 )))dx=J  Let u=x^3 +1         ⇒du=3x^2 dx ⇒ x^2 dx=(1/3)du.  substitute above we get...  J=(1/3)∫_0 ^1 u^(−(1/2)) du  =(1/6)(√u), but u=(√(x^3 +1)).  J=(1/6)((√(√(x^3 +1))))]_0 ^(1 ) =(1/6){(√(√2))−1}  Also:  I_n =∫_0 ^1 x^n (1+x^3 )^((−1)/2) dx.  let u=(1+x^3 )^(−(1/2))                    dv=x^n dx  ⇒(du/dx)=−((3x^2 )/2)(1+x^3 )^(−(3/2))         v=(x^(n+1) /((n+1))).

$$ \\ $$$$ \\ $$$$\mathrm{evaluating}\:\mathrm{the}\:\mathrm{intergral}: \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{x}^{\mathrm{2}} }{\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{3}} }}\mathrm{dx}=\mathrm{J} \\ $$$$\mathrm{Let}\:\mathrm{u}=\mathrm{x}^{\mathrm{3}} +\mathrm{1}\:\:\:\:\: \\ $$$$\:\:\Rightarrow\mathrm{du}=\mathrm{3x}^{\mathrm{2}} \mathrm{dx}\:\Rightarrow\:\mathrm{x}^{\mathrm{2}} \mathrm{dx}=\frac{\mathrm{1}}{\mathrm{3}}\mathrm{du}. \\ $$$$\mathrm{substitute}\:\mathrm{above}\:\mathrm{we}\:\mathrm{get}... \\ $$$$\mathrm{J}=\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{u}^{−\frac{\mathrm{1}}{\mathrm{2}}} \mathrm{du}\:\:=\frac{\mathrm{1}}{\mathrm{6}}\sqrt{\mathrm{u}},\:\mathrm{but}\:\mathrm{u}=\sqrt{\mathrm{x}^{\mathrm{3}} +\mathrm{1}}. \\ $$$$\left.\mathrm{J}=\frac{\mathrm{1}}{\mathrm{6}}\left(\sqrt{\sqrt{\mathrm{x}^{\mathrm{3}} +\mathrm{1}}}\right)\right]_{\mathrm{0}} ^{\mathrm{1}\:} =\frac{\mathrm{1}}{\mathrm{6}}\left\{\sqrt{\sqrt{\mathrm{2}}}−\mathrm{1}\right\} \\ $$$$\mathrm{Also}: \\ $$$$\mathrm{I}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{x}^{\mathrm{n}} \left(\mathrm{1}+\mathrm{x}^{\mathrm{3}} \right)^{\frac{−\mathrm{1}}{\mathrm{2}}} \mathrm{dx}. \\ $$$$\mathrm{let}\:\mathrm{u}=\left(\mathrm{1}+\mathrm{x}^{\mathrm{3}} \right)^{−\frac{\mathrm{1}}{\mathrm{2}}} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{dv}=\mathrm{x}^{\mathrm{n}} \mathrm{dx} \\ $$$$\Rightarrow\frac{\mathrm{du}}{\mathrm{dx}}=−\frac{\mathrm{3x}^{\mathrm{2}} }{\mathrm{2}}\left(\mathrm{1}+\mathrm{x}^{\mathrm{3}} \right)^{−\frac{\mathrm{3}}{\mathrm{2}}} \:\:\:\:\:\:\:\:\mathrm{v}=\frac{\mathrm{x}^{\mathrm{n}+\mathrm{1}} }{\left(\mathrm{n}+\mathrm{1}\right)}. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com