All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 89273 by Ar Brandon last updated on 16/Apr/20
Evaluate∫01x21+x3dxandgiventhatIn=∫01xn(1+x3)−12dxshowthat(2n−1)In=22−2(n−1)forn⩾3.HenceevaluateI8,I7andI6
Answered by 675480065 last updated on 17/Apr/20
evaluatingtheintergral:∫01x21+x3dx=JLetu=x3+1⇒du=3x2dx⇒x2dx=13du.substituteaboveweget...J=13∫01u−12du=16u,butu=x3+1.J=16(x3+1)]01=16{2−1}Also:In=∫01xn(1+x3)−12dx.letu=(1+x3)−12dv=xndx⇒dudx=−3x22(1+x3)−32v=xn+1(n+1).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com