Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 89275 by ajfour last updated on 16/Apr/20

Commented by ajfour last updated on 16/Apr/20

If outer equilateral triangle      has side s=12 units, and     AP =PQ=CQ  then find  equations of both the ellipses.

$${If}\:{outer}\:{equilateral}\:{triangle} \\ $$$$\:\:\:\:{has}\:{side}\:{s}=\mathrm{12}\:{units},\:{and}\: \\ $$$$\:\:{AP}\:={PQ}={CQ}\:\:{then}\:{find} \\ $$$${equations}\:{of}\:{both}\:{the}\:{ellipses}. \\ $$

Answered by mr W last updated on 16/Apr/20

say equation of ellipse is  (x^2 /a^2 )+(((y−b)^2 )/b^2 )=1  equation of AC is  x+(y/(√3))=(s/2)    let ((AP)/(AC))=λ  P(((λs)/2),(((1−λ)(√3)s)/2))    ((((s/2)−(y/(√3)))^2 )/a^2 )+(((y−b)^2 )/b^2 )−1=0  (1/a^2 )((s^2 /4)−((sy)/(√3))+(y^2 /3))+(1/b^2 )(y^2 −2by+b^2 )−1=0  ((1/(3a^2 ))+(1/b^2 ))y^2 −((s/((√3)a^2 ))+(2/b))y+(s^2 /(4a^2 ))=0  Δ=((s/((√3)a^2 ))+(2/b))^2 −4((1/(3a^2 ))+(1/b^2 ))×(s^2 /(4a^2 ))=0  ((s/((√3)a^2 ))+(2/b))^2 −((1/(3a^2 ))+(1/b^2 ))×(s^2 /a^2 )=0  let μ=(b/a), (s/a)=ξ  ⇒((ξ/(√3))+(2/μ))^2 =((1/3)+(1/μ^2 ))ξ^2     (((((λs)/2))^2 )/a^2 )+((((((1−λ)(√3)s)/2)−b)^2 )/b^2 )=1  (((λs)^2 )/a^2 )+(([(1−λ)(√3)s−2b]^2 )/b^2 )=4  λ^2 ξ^2 +[(1−λ)(√3)(ξ/μ)−2]^2 =4  λ^2 μ^2 ξ^2 +[(1−λ)(√3)ξ−2μ]^2 =4μ^2   [λ^2 μ^2 +3(1−λ)^2 ]ξ=4(√3)(1−λ)μ  ⇒ξ=((4(√3)(1−λ)μ)/(λ^2 μ^2 +3(1−λ)^2 ))    ⇒[((4(1−λ)μ)/(λ^2 μ^2 +3(1−λ)^2 ))+(2/μ)]^2 =((1/3)+(1/μ^2 ))[((4(√3)(1−λ)μ)/(λ^2 μ^2 +3(1−λ)^2 ))]^2   [(2−2λ+λ^2 )μ^2 +3(1−λ)^2 ]^2 =4(1−λ)^2 (3+μ^2 )μ^2   ⇒λ^2 (2−λ)^2 μ^4 −6λ(1−λ)^2 (2−λ)μ^2 +9(1−λ)^4 =0  ⇒[λ(2−λ)μ^2 −3(1−λ)^2 ]^2 =0  μ^2 =((3(1−λ)^2 )/(λ(2−λ)))  ⇒μ=(b/a)=(1−λ)(√(3/(λ(2−λ))))  ⇒ξ=(s/a)=((4(√3)(1−λ)μ)/(λ^2 μ^2 +3(1−λ)^2 ))    for a circle μ=1:  (1−λ)(√(3/(λ(2−λ))))=1  4λ^2 −8λ+3=0  ⇒λ=(1/2)

$${say}\:{equation}\:{of}\:{ellipse}\:{is} \\ $$$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{\left({y}−{b}\right)^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$${equation}\:{of}\:{AC}\:{is} \\ $$$${x}+\frac{{y}}{\sqrt{\mathrm{3}}}=\frac{{s}}{\mathrm{2}} \\ $$$$ \\ $$$${let}\:\frac{{AP}}{{AC}}=\lambda \\ $$$${P}\left(\frac{\lambda{s}}{\mathrm{2}},\frac{\left(\mathrm{1}−\lambda\right)\sqrt{\mathrm{3}}{s}}{\mathrm{2}}\right) \\ $$$$ \\ $$$$\frac{\left(\frac{{s}}{\mathrm{2}}−\frac{{y}}{\sqrt{\mathrm{3}}}\right)^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{\left({y}−{b}\right)^{\mathrm{2}} }{{b}^{\mathrm{2}} }−\mathrm{1}=\mathrm{0} \\ $$$$\frac{\mathrm{1}}{{a}^{\mathrm{2}} }\left(\frac{{s}^{\mathrm{2}} }{\mathrm{4}}−\frac{{sy}}{\sqrt{\mathrm{3}}}+\frac{{y}^{\mathrm{2}} }{\mathrm{3}}\right)+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }\left({y}^{\mathrm{2}} −\mathrm{2}{by}+{b}^{\mathrm{2}} \right)−\mathrm{1}=\mathrm{0} \\ $$$$\left(\frac{\mathrm{1}}{\mathrm{3}{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }\right){y}^{\mathrm{2}} −\left(\frac{{s}}{\sqrt{\mathrm{3}}{a}^{\mathrm{2}} }+\frac{\mathrm{2}}{{b}}\right){y}+\frac{{s}^{\mathrm{2}} }{\mathrm{4}{a}^{\mathrm{2}} }=\mathrm{0} \\ $$$$\Delta=\left(\frac{{s}}{\sqrt{\mathrm{3}}{a}^{\mathrm{2}} }+\frac{\mathrm{2}}{{b}}\right)^{\mathrm{2}} −\mathrm{4}\left(\frac{\mathrm{1}}{\mathrm{3}{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }\right)×\frac{{s}^{\mathrm{2}} }{\mathrm{4}{a}^{\mathrm{2}} }=\mathrm{0} \\ $$$$\left(\frac{{s}}{\sqrt{\mathrm{3}}{a}^{\mathrm{2}} }+\frac{\mathrm{2}}{{b}}\right)^{\mathrm{2}} −\left(\frac{\mathrm{1}}{\mathrm{3}{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }\right)×\frac{{s}^{\mathrm{2}} }{{a}^{\mathrm{2}} }=\mathrm{0} \\ $$$${let}\:\mu=\frac{{b}}{{a}},\:\frac{{s}}{{a}}=\xi \\ $$$$\Rightarrow\left(\frac{\xi}{\sqrt{\mathrm{3}}}+\frac{\mathrm{2}}{\mu}\right)^{\mathrm{2}} =\left(\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mu^{\mathrm{2}} }\right)\xi^{\mathrm{2}} \\ $$$$ \\ $$$$\frac{\left(\frac{\lambda{s}}{\mathrm{2}}\right)^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{\left(\frac{\left(\mathrm{1}−\lambda\right)\sqrt{\mathrm{3}}{s}}{\mathrm{2}}−{b}\right)^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\frac{\left(\lambda{s}\right)^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{\left[\left(\mathrm{1}−\lambda\right)\sqrt{\mathrm{3}}{s}−\mathrm{2}{b}\right]^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{4} \\ $$$$\lambda^{\mathrm{2}} \xi^{\mathrm{2}} +\left[\left(\mathrm{1}−\lambda\right)\sqrt{\mathrm{3}}\frac{\xi}{\mu}−\mathrm{2}\right]^{\mathrm{2}} =\mathrm{4} \\ $$$$\lambda^{\mathrm{2}} \mu^{\mathrm{2}} \xi^{\mathrm{2}} +\left[\left(\mathrm{1}−\lambda\right)\sqrt{\mathrm{3}}\xi−\mathrm{2}\mu\right]^{\mathrm{2}} =\mathrm{4}\mu^{\mathrm{2}} \\ $$$$\left[\lambda^{\mathrm{2}} \mu^{\mathrm{2}} +\mathrm{3}\left(\mathrm{1}−\lambda\right)^{\mathrm{2}} \right]\xi=\mathrm{4}\sqrt{\mathrm{3}}\left(\mathrm{1}−\lambda\right)\mu \\ $$$$\Rightarrow\xi=\frac{\mathrm{4}\sqrt{\mathrm{3}}\left(\mathrm{1}−\lambda\right)\mu}{\lambda^{\mathrm{2}} \mu^{\mathrm{2}} +\mathrm{3}\left(\mathrm{1}−\lambda\right)^{\mathrm{2}} } \\ $$$$ \\ $$$$\Rightarrow\left[\frac{\mathrm{4}\left(\mathrm{1}−\lambda\right)\mu}{\lambda^{\mathrm{2}} \mu^{\mathrm{2}} +\mathrm{3}\left(\mathrm{1}−\lambda\right)^{\mathrm{2}} }+\frac{\mathrm{2}}{\mu}\right]^{\mathrm{2}} =\left(\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mu^{\mathrm{2}} }\right)\left[\frac{\mathrm{4}\sqrt{\mathrm{3}}\left(\mathrm{1}−\lambda\right)\mu}{\lambda^{\mathrm{2}} \mu^{\mathrm{2}} +\mathrm{3}\left(\mathrm{1}−\lambda\right)^{\mathrm{2}} }\right]^{\mathrm{2}} \\ $$$$\left[\left(\mathrm{2}−\mathrm{2}\lambda+\lambda^{\mathrm{2}} \right)\mu^{\mathrm{2}} +\mathrm{3}\left(\mathrm{1}−\lambda\right)^{\mathrm{2}} \right]^{\mathrm{2}} =\mathrm{4}\left(\mathrm{1}−\lambda\right)^{\mathrm{2}} \left(\mathrm{3}+\mu^{\mathrm{2}} \right)\mu^{\mathrm{2}} \\ $$$$\Rightarrow\lambda^{\mathrm{2}} \left(\mathrm{2}−\lambda\right)^{\mathrm{2}} \mu^{\mathrm{4}} −\mathrm{6}\lambda\left(\mathrm{1}−\lambda\right)^{\mathrm{2}} \left(\mathrm{2}−\lambda\right)\mu^{\mathrm{2}} +\mathrm{9}\left(\mathrm{1}−\lambda\right)^{\mathrm{4}} =\mathrm{0} \\ $$$$\Rightarrow\left[\lambda\left(\mathrm{2}−\lambda\right)\mu^{\mathrm{2}} −\mathrm{3}\left(\mathrm{1}−\lambda\right)^{\mathrm{2}} \right]^{\mathrm{2}} =\mathrm{0} \\ $$$$\mu^{\mathrm{2}} =\frac{\mathrm{3}\left(\mathrm{1}−\lambda\right)^{\mathrm{2}} }{\lambda\left(\mathrm{2}−\lambda\right)} \\ $$$$\Rightarrow\mu=\frac{{b}}{{a}}=\left(\mathrm{1}−\lambda\right)\sqrt{\frac{\mathrm{3}}{\lambda\left(\mathrm{2}−\lambda\right)}} \\ $$$$\Rightarrow\xi=\frac{{s}}{{a}}=\frac{\mathrm{4}\sqrt{\mathrm{3}}\left(\mathrm{1}−\lambda\right)\mu}{\lambda^{\mathrm{2}} \mu^{\mathrm{2}} +\mathrm{3}\left(\mathrm{1}−\lambda\right)^{\mathrm{2}} } \\ $$$$ \\ $$$${for}\:{a}\:{circle}\:\mu=\mathrm{1}: \\ $$$$\left(\mathrm{1}−\lambda\right)\sqrt{\frac{\mathrm{3}}{\lambda\left(\mathrm{2}−\lambda\right)}}=\mathrm{1} \\ $$$$\mathrm{4}\lambda^{\mathrm{2}} −\mathrm{8}\lambda+\mathrm{3}=\mathrm{0} \\ $$$$\Rightarrow\lambda=\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Commented by ajfour last updated on 17/Apr/20

(I can never type so much  as fast and so meticulously.)  Beautiful solution, thanks Sir.

$$\left({I}\:{can}\:{never}\:{type}\:{so}\:{much}\right. \\ $$$$\left.{as}\:{fast}\:{and}\:{so}\:{meticulously}.\right) \\ $$$${Beautiful}\:{solution},\:{thanks}\:{Sir}. \\ $$

Commented by mr W last updated on 16/Apr/20

Commented by mr W last updated on 16/Apr/20

Commented by mr W last updated on 16/Apr/20

Commented by ajfour last updated on 17/Apr/20

Have you then, already solved it,  Sir?  (for how could you plot, then)  Congratulations, Sir!  (i see from your plot side_△ ≈4)

$${Have}\:{you}\:{then},\:{already}\:{solved}\:{it}, \\ $$$${Sir}?\:\:\left({for}\:{how}\:{could}\:{you}\:{plot},\:{then}\right) \\ $$$${Congratulations},\:{Sir}! \\ $$$$\left({i}\:{see}\:{from}\:{your}\:{plot}\:{side}_{\bigtriangleup} \approx\mathrm{4}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com