Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 89317 by abdomathmax last updated on 16/Apr/20

find ∫     (dx/((x+(√(x−1)))^2 ))

finddx(x+x1)2

Commented by mathmax by abdo last updated on 17/Apr/20

parametric method let f(a) =∫ (dx/(a+x+(√(x−1))))  we have f^′ (a) =−∫ (dx/((a+x+(√(x−1)))^2 )) ⇒∫(dx/((a+x+(√(x−1)))^2 ))=−f^′ (a)  and ∫  (dx/((x+(√(x−1)))^2 )) =−f^′ (0)  changement (√(x−1))=t give x−1=t^2  ⇒  f(a) =∫  ((2tdt)/(a+1+t^2  +t)) =2 ∫  ((tdt)/(t^2  +t +a+1))  =∫((2t+1−1)/(t^2  +t+a+1))dt =ln∣t^2  +t +a+1∣−∫  (dt/(t^2  +t+1+a)) we have  ∫  (dt/(t^2  +t+1 +a)) =∫ (dt/((t+(1/2))^2  +a+(3/4))) =_(t+(1/2)=(√(a+(3/4)))u)   =(1/((a+(3/4)))) ∫  (1/(1+u^2 ))×(√(a+(3/4)))du  =(1/(√(a+(3/4)))) arctan(((2t+1)/(√(4a+3)))) +C  =(2/(√(4a+3))) arctan(((2(√(x−1))+1)/(√(4a+3)))) +C ⇒  f^′ (a) =2{(4a+3)^(−(1/2))  arctan(((2(√(x−1))+1)/(√(4a+3))))}^((1))   =−4(4a+3)^(−(3/2))  arctan(((2(√(x−1))+1)/(√(4a+3))))+2 (4a+3)^(−(1/2))  ×(((((2(√(x−1))+1)/(√(4a+3))))^′ )/(1+(((2(√(x−1))+1)/(√(4a+3))))^2 ))  =−4(4a+3)^(−(3/2))  arctan(((2(√(x−1))+1)/(√(4a+3))))+2(4a+3)^(−(1/2)) ×(1/((√(4a+3))(√(x−1))(1+(((2(√(x−1))+1)^2 )/(4a+3)))))  f^′ (0) =−4(3)^(−(3/2))  arctan(((2(√(x−1))+1)/(√3))) +2(3)^(−(1/2)) ×(1/((√3)(√(x−1))(1+(((2(√(x−1))+1)^2 )/3))))  I =−f^′ (0)

parametricmethodletf(a)=dxa+x+x1wehavef(a)=dx(a+x+x1)2dx(a+x+x1)2=f(a)anddx(x+x1)2=f(0)changementx1=tgivex1=t2f(a)=2tdta+1+t2+t=2tdtt2+t+a+1=2t+11t2+t+a+1dt=lnt2+t+a+1dtt2+t+1+awehavedtt2+t+1+a=dt(t+12)2+a+34=t+12=a+34u=1(a+34)11+u2×a+34du=1a+34arctan(2t+14a+3)+C=24a+3arctan(2x1+14a+3)+Cf(a)=2{(4a+3)12arctan(2x1+14a+3)}(1)=4(4a+3)32arctan(2x1+14a+3)+2(4a+3)12×(2x1+14a+3)1+(2x1+14a+3)2=4(4a+3)32arctan(2x1+14a+3)+2(4a+3)12×14a+3x1(1+(2x1+1)24a+3)f(0)=4(3)32arctan(2x1+13)+2(3)12×13x1(1+(2x1+1)23)I=f(0)

Commented by mathmax by abdo last updated on 17/Apr/20

forgive f^′ (a) =(1/(t^2  +t+a+1)) +4(4a+3)^(−(3/2))  arctan(((2(√(x−1))+1)/(√(4a+3))))  −2(4a+3)^(−(1/2)) ×(1/((√(4a+3))(√(x−1))(1+(((2(√(x−1))+1)^2 )/(4a+3))))) ⇒  f^′ (0) =(1/(t^2  +t+1)) +4(3)^(−(3/2))  arctan(((2(√(x−1))+1)/(√3)))  −2(3)^(−(1/2)) ×(1/((√3)(√(x−1))(1+(((2(√(x−1))+1)^2 )/3))))

forgivef(a)=1t2+t+a+1+4(4a+3)32arctan(2x1+14a+3)2(4a+3)12×14a+3x1(1+(2x1+1)24a+3)f(0)=1t2+t+1+4(3)32arctan(2x1+13)2(3)12×13x1(1+(2x1+1)23)

Answered by MJS last updated on 16/Apr/20

∫(dx/((x+(√(x−1)))^2 ))=       [t=(√(x−1)) → dx=2(√(x−1))dt]  =2∫(t/((t^2 +t+1)^2 ))dt=       [Ostrogradski]  =−((2(t+2))/(3(t^2 +t+1)))−(2/3)∫(dt/(t^2 +t+1))=  =−((2(t+2))/(3(t^2 +t+1)))−((4(√3))/9)arctan ((2t+1)/(√3)) =  =−((2(2+(√(x−1))))/(3(x+(√(x−1)))))−((4(√3))/9)arctan ((1+2(√(x−1)))/(√3)) +C

dx(x+x1)2=[t=x1dx=2x1dt]=2t(t2+t+1)2dt=[Ostrogradski]=2(t+2)3(t2+t+1)23dtt2+t+1==2(t+2)3(t2+t+1)439arctan2t+13==2(2+x1)3(x+x1)439arctan1+2x13+C

Commented by mathmax by abdo last updated on 17/Apr/20

thank you sir.

thankyousir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com