Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 89318 by M±th+et£s last updated on 16/Apr/20

∫(dx/(sin^3 (2x)+cos^3 (2x)))

dxsin3(2x)+cos3(2x)

Answered by MJS last updated on 16/Apr/20

∫(dx/(sin^3  2x +cos^3  2x))=       [t=tan x → dx=cos^2  x dt]  =−∫(((t^2 +1)^2 )/((t^2 −2t−1)(t^2 +(1−(√3))t+2−(√3))(t^2 +(1+(√3))t+2+(√3))))dt=  =−(2/3)∫(dt/(t^2 −2t−1))+       −((1−(√3))/6)∫(dt/(t^2 +(1−(√3))t+2−(√3)))−       −((1+(√3))/6)∫(dt/(t^2 +(1+(√3))t+2+(√3)))=  [now use formulas]  =((√2)/6)ln ((t−1+(√2))/(t−1−(√2))) +(1/3)(arctan ((1+(√3))t−1) +arctan ((1−(√3))t−1))  with t=tan x

dxsin32x+cos32x=[t=tanxdx=cos2xdt]=(t2+1)2(t22t1)(t2+(13)t+23)(t2+(1+3)t+2+3)dt==23dtt22t1+136dtt2+(13)t+231+36dtt2+(1+3)t+2+3=[nowuseformulas]=26lnt1+2t12+13(arctan((1+3)t1)+arctan((13)t1))witht=tanx

Commented by M±th+et£s last updated on 16/Apr/20

thank you sir

thankyousir

Answered by M±th+et£s last updated on 17/Apr/20

I=∫(dx/((sin(2x)+cos(2x))(1−cos2x sin2x))  =2∫(dx/((sin2x+cos2x)(2−sin4x)))  I=2∫((cos(2x)+sin(2x))/((1+sin(4x))(2−sin4x)))dx  y=cos(2x)−sin(2x) ⇒⇒ dy=(−2sin(2x)−2cos(2x))⇒−2(sin(2x)+cos(2x))  y^2 =1−sin(4x)  sin(4x)=1−y^2   =2∫((((−1)/2)dy)/((1+1−y^2 )(2−1+y^2 )))  =−∫(dy/((2−y^2 )(1+y^2 )))  =−∫(dy/(((√2)−y)((√2)+y)(1+y^2 )))  =−(2/3)∫((1/((((√2))^2 −y^2 )))+(1/(1+y^2 )))dy  =((−2)/3) (1/(2(√2))) ln∣(((√2)+y)/((√2)−y))∣−(2/3)tan^(−1) (y)+c  =((−2)/3) (1/(2(√2))) ln∣(((√2)+cos2x−sin(2x))/((√2)−cos(2x)+sin(2x)))∣−(2/3)tan^(−1) (cos(2x)−sin(2x))+c

I=dx(sin(2x)+cos(2x))(1cos2xsin2x=2dx(sin2x+cos2x)(2sin4x)I=2cos(2x)+sin(2x)(1+sin(4x))(2sin4x)dxy=cos(2x)sin(2x)⇒⇒dy=(2sin(2x)2cos(2x))2(sin(2x)+cos(2x))y2=1sin(4x)sin(4x)=1y2=212dy(1+1y2)(21+y2)=dy(2y2)(1+y2)=dy(2y)(2+y)(1+y2)=23(1((2)2y2)+11+y2)dy=23122ln2+y2y23tan1(y)+c=23122ln2+cos2xsin(2x)2cos(2x)+sin(2x)23tan1(cos(2x)sin(2x))+c

Commented by MJS last updated on 17/Apr/20

the path is ok but the constants are wrong  I get in your line 10  (1/3)∫(dy/(y^2 −2))−(1/3)∫(dy/(y^2 +1))=  =−((√2)/(12))ln ((y+(√2))/(y−(√2))) −(1/3)arctan y

thepathisokbuttheconstantsarewrongIgetinyourline1013dyy2213dyy2+1==212lny+2y213arctany

Commented by M±th+et£s last updated on 17/Apr/20

thank you sir but can you show your  work how did you get (1/3)∫(dy/(y^2 −2)) −(1/3)∫(dy/(y^2 +1))  and iam greatful to you for your notice

thankyousirbutcanyoushowyourworkhowdidyouget13dyy2213dyy2+1andiamgreatfultoyouforyournotice

Commented by M±th+et£s last updated on 17/Apr/20

and i think its −(1/3)∫(1/(x^2 −2))dx + (1/3)∫(1/(x^2 +1))dx

andithinkits131x22dx+131x2+1dx

Commented by M±th+et£s last updated on 17/Apr/20

ok sir thank you i get it

oksirthankyouigetit

Terms of Service

Privacy Policy

Contact: info@tinkutara.com