Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 89496 by I want to learn more last updated on 17/Apr/20

Answered by me2love2math last updated on 17/Apr/20

use sine rule

usesinerule

Answered by $@ty@m123 last updated on 17/Apr/20

((BD)/(sin {180−(45+x)}))=((AD)/(sin x))  ((BD)/(sin(45+x)))=((AD)/(sin x))  ((BD (√2))/(cos x+sin x))=((AD)/(sin x))   ((BD)/(AD))=((cos x+sin x)/((√2)sin x)) ...(1)  ((BD)/(sin x))=((AD)/(sin {45−x))) {∵x+∠C =45^o   ((BD)/(sin x))=((AD(√2))/(cos x−sin x))   ((BD)/(AD))=(((√2)sin x)/(cos x−sin x)) ....(2)  From (1) & (2),  ((cos x+sin x)/((√2)sin x))=(((√2)sin x)/(cos x−sin x))  cos^2 x−sin^2 x=2sin^2 x  3sin^2 x=cos^2 x  tan^2 x=(1/3)  x=30^o

BDsin{180(45+x)}=ADsinxBDsin(45+x)=ADsinxBD2cosx+sinx=ADsinxBDAD=cosx+sinx2sinx...(1)BDsinx=ADsin{45x){x+C=45oBDsinx=AD2cosxsinxBDAD=2sinxcosxsinx....(2)From(1)&(2),cosx+sinx2sinx=2sinxcosxsinxcos2xsin2x=2sin2x3sin2x=cos2xtan2x=13x=30o

Commented by I want to learn more last updated on 17/Apr/20

Thanks sir.

Thankssir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com