Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 89510 by Ar Brandon last updated on 17/Apr/20

Find the expansion of Xe^(1/x)

$${Find}\:{the}\:{expansion}\:{of}\:{Xe}^{\frac{\mathrm{1}}{{x}}} \: \\ $$

Commented by mathmax by abdo last updated on 18/Apr/20

we have e^u  =Σ_(n=0) ^∞  (u^n /(n!))  with radius r=+∞ ⇒  xe^(1/x)  =x Σ_(n=0) ^∞  (1/(n! x^n )) =x(1 +Σ_(n=1) ^∞  (1/(n! x^n )))=x+Σ_(n=1) ^∞  (1/(n! x^(n−1) ))  =x +(1/(1!)) +(1/(2!x)) +(1/(3!x^2 )) +....but this expansion is not integr serie  if we want developpement st integr serie we write  xe^(1/x)  =Σ_(n=0) ^∞  ((f^((n)) (0))/(n!))x^n   with f(x)=xe^(1/x)   by leibniz  f^((n))  (x)=Σ_(k=0) ^n C_n ^k  (x)^k (e^(1/x) )^((n−k))  = x (e^(1/x) )^((n))  +C_n ^1 (e^(1/x) )^((n−1))   (e^(1/x) )^((1)) =−(1/x^2 )e^(1/x)   and (e^(1/x) )^((2))  =−(−((−2x)/x^4 )e^(1/x)  +(1/x^2 )×(−(1/x^2 ))e^(1/x) )  =(−(2/x^3 ) +(1/x^4 ))e^(1/x)  =(((−2x+1)/x^4 ))e^(1/x)    any way f^((n)) =((p_n (x))/x^(2n) )e^(1/x)    ....

$${we}\:{have}\:{e}^{{u}} \:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{u}^{{n}} }{{n}!}\:\:{with}\:{radius}\:{r}=+\infty\:\Rightarrow \\ $$$${xe}^{\frac{\mathrm{1}}{{x}}} \:={x}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{{n}!\:{x}^{{n}} }\:={x}\left(\mathrm{1}\:+\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}!\:{x}^{{n}} }\right)={x}+\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}!\:{x}^{{n}−\mathrm{1}} } \\ $$$$={x}\:+\frac{\mathrm{1}}{\mathrm{1}!}\:+\frac{\mathrm{1}}{\mathrm{2}!{x}}\:+\frac{\mathrm{1}}{\mathrm{3}!{x}^{\mathrm{2}} }\:+....{but}\:{this}\:{expansion}\:{is}\:{not}\:{integr}\:{serie} \\ $$$${if}\:{we}\:{want}\:{developpement}\:{st}\:{integr}\:{serie}\:{we}\:{write} \\ $$$${xe}^{\frac{\mathrm{1}}{{x}}} \:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{f}^{\left({n}\right)} \left(\mathrm{0}\right)}{{n}!}{x}^{{n}} \:\:{with}\:{f}\left({x}\right)={xe}^{\frac{\mathrm{1}}{{x}}} \:\:{by}\:{leibniz} \\ $$$${f}^{\left({n}\right)} \:\left({x}\right)=\sum_{{k}=\mathrm{0}} ^{{n}} {C}_{{n}} ^{{k}} \:\left({x}\right)^{{k}} \left({e}^{\frac{\mathrm{1}}{{x}}} \right)^{\left({n}−{k}\right)} \:=\:{x}\:\left({e}^{\frac{\mathrm{1}}{{x}}} \right)^{\left({n}\right)} \:+{C}_{{n}} ^{\mathrm{1}} \left({e}^{\frac{\mathrm{1}}{{x}}} \right)^{\left({n}−\mathrm{1}\right)} \\ $$$$\left({e}^{\frac{\mathrm{1}}{{x}}} \right)^{\left(\mathrm{1}\right)} =−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }{e}^{\frac{\mathrm{1}}{{x}}} \:\:{and}\:\left({e}^{\frac{\mathrm{1}}{{x}}} \right)^{\left(\mathrm{2}\right)} \:=−\left(−\frac{−\mathrm{2}{x}}{{x}^{\mathrm{4}} }{e}^{\frac{\mathrm{1}}{{x}}} \:+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }×\left(−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right){e}^{\frac{\mathrm{1}}{{x}}} \right) \\ $$$$=\left(−\frac{\mathrm{2}}{{x}^{\mathrm{3}} }\:+\frac{\mathrm{1}}{{x}^{\mathrm{4}} }\right){e}^{\frac{\mathrm{1}}{{x}}} \:=\left(\frac{−\mathrm{2}{x}+\mathrm{1}}{{x}^{\mathrm{4}} }\right){e}^{\frac{\mathrm{1}}{{x}}} \:\:\:{any}\:{way}\:{f}^{\left({n}\right)} =\frac{{p}_{{n}} \left({x}\right)}{{x}^{\mathrm{2}{n}} }{e}^{\frac{\mathrm{1}}{{x}}} \:\:\:.... \\ $$

Commented by Ar Brandon last updated on 18/Apr/20

Thank you

$${Thank}\:{you}\: \\ $$

Commented by mathmax by abdo last updated on 18/Apr/20

you are welcome .

$${you}\:{are}\:{welcome}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com