Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 89753 by jagoll last updated on 19/Apr/20

(d/dx) (Π_(k = 1) ^(16) (x+(1/k)))∣_( x = 0)  = ?

$$\frac{\mathrm{d}}{\mathrm{dx}}\:\left(\underset{\mathrm{k}\:=\:\mathrm{1}} {\overset{\mathrm{16}} {\prod}}\left(\mathrm{x}+\frac{\mathrm{1}}{\mathrm{k}}\right)\right)\underset{\:\mathrm{x}\:=\:\mathrm{0}} {\mid}\:=\:? \\ $$

Commented by mr W last updated on 19/Apr/20

sorry! i misread Π as Σ.

$${sorry}!\:{i}\:{misread}\:\Pi\:{as}\:\Sigma. \\ $$

Commented by john santu last updated on 19/Apr/20

thank you sir

$${thank}\:{you}\:{sir} \\ $$$$ \\ $$

Commented by john santu last updated on 19/Apr/20

(d/dx) [ (x+1)(x+(1/2))(x+(1/3))...(x+(1/(16)))]  = (x+(1/2))(x+(1/3))...+(x+(1/(16))) +  (x+1)(x+(1/3))...(x+(1/(16)))+...  = Σ_(k = 1 ) ^(16) ((Π_(n = 1) ^(16) (x+(1/n)))/(x+(1/k) )) ∣_(x = 0)   = ((Σ_(n = 1) ^(16)  ((1/n)))/(1/k)) = (1/(16!)) ×((16(16+1))/2)  = (1/(15!)) ×((17)/2)

$$\frac{{d}}{{dx}}\:\left[\:\left({x}+\mathrm{1}\right)\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)\left({x}+\frac{\mathrm{1}}{\mathrm{3}}\right)...\left({x}+\frac{\mathrm{1}}{\mathrm{16}}\right)\right] \\ $$$$=\:\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)\left({x}+\frac{\mathrm{1}}{\mathrm{3}}\right)...+\left({x}+\frac{\mathrm{1}}{\mathrm{16}}\right)\:+ \\ $$$$\left({x}+\mathrm{1}\right)\left({x}+\frac{\mathrm{1}}{\mathrm{3}}\right)...\left({x}+\frac{\mathrm{1}}{\mathrm{16}}\right)+... \\ $$$$=\:\underset{{k}\:=\:\mathrm{1}\:} {\overset{\mathrm{16}} {\sum}}\frac{\underset{{n}\:=\:\mathrm{1}} {\overset{\mathrm{16}} {\prod}}\left({x}+\frac{\mathrm{1}}{{n}}\right)}{{x}+\frac{\mathrm{1}}{{k}}\:}\:\mid_{{x}\:=\:\mathrm{0}} \\ $$$$=\:\frac{\underset{{n}\:=\:\mathrm{1}} {\overset{\mathrm{16}} {\sum}}\:\left(\frac{\mathrm{1}}{{n}}\right)}{\frac{\mathrm{1}}{{k}}}\:=\:\frac{\mathrm{1}}{\mathrm{16}!}\:×\frac{\mathrm{16}\left(\mathrm{16}+\mathrm{1}\right)}{\mathrm{2}} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{15}!}\:×\frac{\mathrm{17}}{\mathrm{2}} \\ $$

Commented by john santu last updated on 19/Apr/20

tes for Π_(k = 1) ^3 (x+(1/k)) =  (x+1)(x+(1/2))(x+(1/3)) =  (x+1)(((2x+1)/2))(((3x+1)/3)) =   (1/6)(x+1)(6x^2 +5x+1) =   (1/6)(6x^3 +11x^2 +6x+1)   (d/dx) [(1/6)(6x^3 +11x^2 +6x+1)] =  (1/6)(18x^2 +22x+6) ∣_(x = 0 )   = (6/6) = 1

$${tes}\:{for}\:\underset{{k}\:=\:\mathrm{1}} {\overset{\mathrm{3}} {\prod}}\left({x}+\frac{\mathrm{1}}{{k}}\right)\:= \\ $$$$\left({x}+\mathrm{1}\right)\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)\left({x}+\frac{\mathrm{1}}{\mathrm{3}}\right)\:= \\ $$$$\left({x}+\mathrm{1}\right)\left(\frac{\mathrm{2}{x}+\mathrm{1}}{\mathrm{2}}\right)\left(\frac{\mathrm{3}{x}+\mathrm{1}}{\mathrm{3}}\right)\:=\: \\ $$$$\frac{\mathrm{1}}{\mathrm{6}}\left({x}+\mathrm{1}\right)\left(\mathrm{6}{x}^{\mathrm{2}} +\mathrm{5}{x}+\mathrm{1}\right)\:=\: \\ $$$$\frac{\mathrm{1}}{\mathrm{6}}\left(\mathrm{6}{x}^{\mathrm{3}} +\mathrm{11}{x}^{\mathrm{2}} +\mathrm{6}{x}+\mathrm{1}\right)\: \\ $$$$\frac{{d}}{{dx}}\:\left[\frac{\mathrm{1}}{\mathrm{6}}\left(\mathrm{6}{x}^{\mathrm{3}} +\mathrm{11}{x}^{\mathrm{2}} +\mathrm{6}{x}+\mathrm{1}\right)\right]\:= \\ $$$$\frac{\mathrm{1}}{\mathrm{6}}\left(\mathrm{18}{x}^{\mathrm{2}} +\mathrm{22}{x}+\mathrm{6}\right)\:\mid_{{x}\:=\:\mathrm{0}\:} \\ $$$$=\:\frac{\mathrm{6}}{\mathrm{6}}\:=\:\mathrm{1}\: \\ $$$$ \\ $$

Commented by john santu last updated on 19/Apr/20

mr W. sorry . i think your answer  wrong

$${mr}\:{W}.\:{sorry}\:.\:{i}\:{think}\:{your}\:{answer} \\ $$$${wrong}\: \\ $$

Commented by john santu last updated on 19/Apr/20

in generally   (d/dx)[Π_(k = 1) ^n  (x+(1/k))] ∣_(x = 0 )  = (((n+1))/(2(n−1)!))

$${in}\:{generally}\: \\ $$$$\frac{{d}}{{dx}}\left[\underset{{k}\:=\:\mathrm{1}} {\overset{{n}} {\prod}}\:\left({x}+\frac{\mathrm{1}}{{k}}\right)\right]\:\mid_{{x}\:=\:\mathrm{0}\:} \:=\:\frac{\left({n}+\mathrm{1}\right)}{\mathrm{2}\left({n}−\mathrm{1}\right)!}\: \\ $$

Answered by mr W last updated on 19/Apr/20

y=Π_(k = 1) ^n (x+(1/k))  ln y=Σ_(k = 1) ^n [ln (x+(1/k))]  (1/y)(dy/dx)=Σ_(k = 1) ^n [(d/dx)ln (x+(1/k))]  (1/y)(dy/dx)=Σ_(k = 1) ^n (1/(x+(1/k)))  ⇒(dy/dx)=Π_(k = 1) ^n (x+(1/k))Σ_(k = 1) ^n ((1/(x+(1/k))))  at x=0:  (dy/dx)=Π_(k = 1) ^n ((1/k))Σ_(k = 1) ^n ((1/(1/k)))=Π_(k = 1) ^n (1/k)Σ_(k = 1) ^n k  =(1/(n!))×((n(n+1))/2)  =((n+1)/(2(n−1)!))  with n=16:  (dy/dx)∣_(x=0) =((17)/(2×15!))

$${y}=\underset{\mathrm{k}\:=\:\mathrm{1}} {\overset{{n}} {\prod}}\left(\mathrm{x}+\frac{\mathrm{1}}{\mathrm{k}}\right) \\ $$$$\mathrm{ln}\:{y}=\underset{\mathrm{k}\:=\:\mathrm{1}} {\overset{{n}} {\sum}}\left[\mathrm{ln}\:\left(\mathrm{x}+\frac{\mathrm{1}}{\mathrm{k}}\right)\right] \\ $$$$\frac{\mathrm{1}}{{y}}\frac{{dy}}{{dx}}=\underset{\mathrm{k}\:=\:\mathrm{1}} {\overset{{n}} {\sum}}\left[\frac{{d}}{{dx}}\mathrm{ln}\:\left(\mathrm{x}+\frac{\mathrm{1}}{\mathrm{k}}\right)\right] \\ $$$$\frac{\mathrm{1}}{{y}}\frac{{dy}}{{dx}}=\underset{\mathrm{k}\:=\:\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{x}+\frac{\mathrm{1}}{{k}}} \\ $$$$\Rightarrow\frac{{dy}}{{dx}}=\underset{\mathrm{k}\:=\:\mathrm{1}} {\overset{{n}} {\prod}}\left(\mathrm{x}+\frac{\mathrm{1}}{\mathrm{k}}\right)\underset{\mathrm{k}\:=\:\mathrm{1}} {\overset{{n}} {\sum}}\left(\frac{\mathrm{1}}{{x}+\frac{\mathrm{1}}{{k}}}\right) \\ $$$${at}\:{x}=\mathrm{0}: \\ $$$$\frac{{dy}}{{dx}}=\underset{\mathrm{k}\:=\:\mathrm{1}} {\overset{{n}} {\prod}}\left(\frac{\mathrm{1}}{\mathrm{k}}\right)\underset{\mathrm{k}\:=\:\mathrm{1}} {\overset{{n}} {\sum}}\left(\frac{\mathrm{1}}{\frac{\mathrm{1}}{{k}}}\right)=\underset{\mathrm{k}\:=\:\mathrm{1}} {\overset{{n}} {\prod}}\frac{\mathrm{1}}{\mathrm{k}}\underset{\mathrm{k}\:=\:\mathrm{1}} {\overset{{n}} {\sum}}{k} \\ $$$$=\frac{\mathrm{1}}{{n}!}×\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}} \\ $$$$=\frac{{n}+\mathrm{1}}{\mathrm{2}\left({n}−\mathrm{1}\right)!} \\ $$$${with}\:{n}=\mathrm{16}: \\ $$$$\frac{{dy}}{{dx}}\mid_{{x}=\mathrm{0}} =\frac{\mathrm{17}}{\mathrm{2}×\mathrm{15}!} \\ $$

Commented by john santu last updated on 19/Apr/20

great sir

$${great}\:{sir}\: \\ $$

Commented by jagoll last updated on 19/Apr/20

waw...thank you mr w & mr john

$$\mathrm{waw}...\mathrm{thank}\:\mathrm{you}\:\mathrm{mr}\:\mathrm{w}\:\&\:\mathrm{mr}\:\mathrm{john} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com