Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 89846 by M±th+et£s last updated on 19/Apr/20

∫_(−1) ^1  x cosh(x) ln(1+e^x ) dx

11xcosh(x)ln(1+ex)dx

Commented by M±th+et£s last updated on 19/Apr/20

thank you verry much

thankyouverrymuch

Commented by abdomathmax last updated on 19/Apr/20

I =∫_(−1) ^1  x((e^x  +e^(−x) )/2)ln(1+e^x )dt  =(1/2)∫_(−1) ^1  xe^x ln(1+e^x )dx+(1/2)∫_(−1) ^1  x e^(−x) ln(1+e^x )dx  =H +K  H =∫_(−1) ^1  xe^x ln(1+e^x )dx by parts u^′ =xe^x  and  v=ln(1+e^x ) ⇒u =∫xe^x  =xe^x −∫e^x  =(x−1)e^x   H =[(x−1)e^x ln(1+e^x )]_(−1) ^1 −∫_(−1) ^1 (x−1)e^x ×(e^x /(1+e^x ))dx  =2 e^(−1) ln(1+e^(−1) )−∫_(−1) ^1  (((x−1)e^(2x) )/(1+e^x )) dx  ∫_(−1) ^1  (((x−1)e^(2x) )/(1+e^x ))dx =_(e^x =t)    ∫_e^(−1)  ^e  (((lnt−1)t^2 )/(1+t))×(dt/t)  =∫_e^(−1)  ^e  ((tlnt−t)/(1+t))dt =[ln(t)ln(t)]_e^(−1)  ^e −∫_e^(−1)  ^e lnt ln(1+t)dt  =2 −∫_e^(−1)  ^e  ln(t)ln(1+t)dt  we have  ∫_e^(−1)  ^e ln(t)ln(1+t)dt =∫_e^(−1)  ^1  ln(t)ln(1+t)dt +  ∫_1 ^e  ln(t)ln(1+t)dt  ln^′ (1+t)  =Σ_(n=0) ^∞ (−1)^n t^n  ⇒  ln(1+t) =Σ_(n=0) ^∞  (((−1)^n )/(n+1))t^(n+1)  +c  (c=0)  =Σ_(n=1) ^∞  (((−1)^(n−1) t^n )/n) ⇒  ∫_e^(−1)  ^1 ln(t)ln(1+t)dt =∫_e^(−1)  ^1 lnt(Σ_(n=1) ^∞  (((−1)^(n−1) )/n)t^n )dt  =Σ_(n=1) ^∞  (((−1)^(n−1) )/n) ∫_e^(−1)  ^1  t^n  ln(t)dt   A_n =∫_e^(−1)  ^1  t^n  ln(t)dt =[(t^(n+1) /(n+1))ln(t)]_e^(−1)  ^1 −∫_e^(−1)  ^1 (t^n /(n+1))dt  =(1/(n+1))e^(−n−1) −(1/(n+1))[(1/(n+1))t^(n+1) ]_e^(−1)  ^1   ...be continued...

I=11xex+ex2ln(1+ex)dt=1211xexln(1+ex)dx+1211xexln(1+ex)dx=H+KH=11xexln(1+ex)dxbypartsu=xexandv=ln(1+ex)u=xex=xexex=(x1)exH=[(x1)exln(1+ex)]1111(x1)ex×ex1+exdx=2e1ln(1+e1)11(x1)e2x1+exdx11(x1)e2x1+exdx=ex=te1e(lnt1)t21+t×dtt=e1etlntt1+tdt=[ln(t)ln(t)]e1ee1elntln(1+t)dt=2e1eln(t)ln(1+t)dtwehavee1eln(t)ln(1+t)dt=e11ln(t)ln(1+t)dt+1eln(t)ln(1+t)dtln(1+t)=n=0(1)ntnln(1+t)=n=0(1)nn+1tn+1+c(c=0)=n=1(1)n1tnne11ln(t)ln(1+t)dt=e11lnt(n=1(1)n1ntn)dt=n=1(1)n1ne11tnln(t)dtAn=e11tnln(t)dt=[tn+1n+1ln(t)]e11e11tnn+1dt=1n+1en11n+1[1n+1tn+1]e11...becontinued...

Commented by mathmax by abdo last updated on 19/Apr/20

you are welcome.

youarewelcome.

Answered by M±th+et£s last updated on 19/Apr/20

∫_(−1) ^1 x cosh(x) ln(1+e^x ).......(1)  let y=−x ⇒ dy=−dx  I=∫_(−1) ^1 −y cosh(−y) ln(1+e^y ) dx  I=∫_(−1) ^1 −y cosh(−y) ln(((1+e^y )/e^y )) dy  I=∫_(−1) ^1 −y cosh(y) ln(1+e^y ) + y cosh(y) ln(e^y ) dy  I=∫_(−1) ^1 −y cosh(y) ln(1+e^y )+y^2  cosh(y) dy....(2)  add(1) to (2)  2I=∫_(−1) ^1 x^2 cosh(x) dx  integrate by parts  2I=(x^2 +2)sinh(x)−2x cosh(x)∣_(−1) ^1  ._ ^   2I=6sinh(1)−4cosh(1)  I=3sinh(1)−2cosh(1)

11xcosh(x)ln(1+ex).......(1)lety=xdy=dxI=11ycosh(y)ln(1+ey)dxI=11ycosh(y)ln(1+eyey)dyI=11ycosh(y)ln(1+ey)+ycosh(y)ln(ey)dyI=11ycosh(y)ln(1+ey)+y2cosh(y)dy....(2)add(1)to(2)2I=11x2cosh(x)dxintegratebyparts2I=(x2+2)sinh(x)2xcosh(x)11.2I=6sinh(1)4cosh(1)I=3sinh(1)2cosh(1)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com