Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 89849 by ajfour last updated on 19/Apr/20

Commented by ajfour last updated on 19/Apr/20

Find maximum area of △PQR  in terms of ellipse parameters a,b.  or  find side of △PQR when  it is equilateral.

FindmaximumareaofPQRintermsofellipseparametersa,b.orfindsideofPQRwhenitisequilateral.

Answered by mr W last updated on 19/Apr/20

PART I  r=b  P ′(r cos θ, r sin θ)  Q ′(r sin θ, r cos θ)  A=(r^2 /2)tan ((π/4)+(θ/2))(cos θ−sin θ)^2   A=(r^2 /2)×((1+tan (θ/2))/(1−tan (θ/2)))(((1−tan^2  (θ/2)−2 tan (θ/2))/(1+tan^2  (θ/2))))^2   let t=tan (θ/2)  ⇒((2A)/r^2 )=((1+t)/(1−t))(((1−t^2 −2t)/(1+t^2 )))^2   (d/dt)(((2A)/r^2 ))=0  .....  ⇒t=−0.1526  ⇒θ=−17.3528°  A_(max) =((1.1538r^2 )/2)=0.5769r^2 =0.5769ab

PARTIr=bP(rcosθ,rsinθ)Q(rsinθ,rcosθ)A=r22tan(π4+θ2)(cosθsinθ)2A=r22×1+tanθ21tanθ2(1tan2θ22tanθ21+tan2θ2)2lett=tanθ22Ar2=1+t1t(1t22t1+t2)2ddt(2Ar2)=0.....t=0.1526θ=17.3528°Amax=1.1538r22=0.5769r2=0.5769ab

Commented by mr W last updated on 19/Apr/20

Commented by ajfour last updated on 20/Apr/20

sir  why  x_(P′) =y_(Q′)   &  y_(P′) =x_(Q′)   and where does ′a′ go?

sirwhyxP=yQ&yP=xQandwheredoesago?

Commented by mr W last updated on 20/Apr/20

in case of circle we use the symmetry  for the max. area.  in case of ellipse we only need to  stretch the circle in x−direction in  ratio (a/r), i.e. (a/b).

incaseofcircleweusethesymmetryforthemax.area.incaseofellipseweonlyneedtostretchthecircleinxdirectioninratioar,i.e.ab.

Answered by mr W last updated on 19/Apr/20

Commented by mr W last updated on 19/Apr/20

PART II  the point R must lie on the green circle  with center at C.  let α=tan^(−1) (b/a), μ=(b/a)  AC=((AB)/(2 cos 30°))=(√((a^2 +b^2 )/3))  x_C =−a+AC  cos (30°−α)  x_C =−a+(√((a^2 +b^2 )/3)) (((√3)/2)×(a/(√(a^2 +b^2 )))+(1/2)×(b/(√(a^2 +b^2 ))))  ⇒x_C =−(1/2) (a−(b/(√3)))  y_C =AC sin (30°−α)=(√((a^2 +b^2 )/3))((1/2)×(a/(√(a^2 +b^2 )))−((√3)/2)×(b/(√(a^2 +b^2 ))))  ⇒y_C =(1/2)((a/(√3))−b)    eqn. of green circle:  [x+(1/2)(a−(b/(√3)))]^2 +[y−(1/2)((a/(√3))−b)]^2 =((a^2 +b^2 )/3)  or  x_R =−(1/2)(a−(b/(√3)))+(√((a^2 +b^2 )/3)) cos θ  y_R =(1/2)((a/(√3))−b)+(√((a^2 +b^2 )/3)) sin θ  ⇒(x_R /a)=−(1/2)(1−(μ/(√3)))+(√((1+μ^2 )/3)) cos θ  ⇒(y_R /a)=(1/2)((1/(√3))−μ)+(√((1+μ^2 )/3)) sin θ    eqn. of AR:  y=((a−(√3)b+2(√(a^2 +b^2 )) sin θ)/((√3)a+b+2(√(a^2 +b^2 )) cos θ))(x+a)  y=((1−(√3)μ+2(√(1+μ^2 )) sin θ)/((√3)+μ+2(√(1+μ^2 )) cos θ))(x+a)  intersection point P:  y_P =((1−(√3)μ+2(√(1+μ^2 )) sin θ)/((√3)+μ+2(√(1+μ^2 )) cos θ))(x_P +a)  ((x_P /a))^2 +((y_P /b))^2 =1  (((1−(√3)μ+2(√(1+μ^2 )) sin θ)/((√3)+μ+2(√(1+μ^2 )) cos θ)))^2 (1+(x_P /a))^2 =μ^2 [1−((x_P /a))^2 ]  (((1−(√3)μ+2(√(1+μ^2 )) sin θ)/((√3)+μ+2(√(1+μ^2 )) cos θ)))^2 (1+(x_P /a))=μ^2 (1−(x_P /a))  ⇒(x_P /a)=((μ^2 −(((1−(√3)μ+2(√(1+μ^2 )) sin θ)/((√3)+μ+2(√(1+μ^2 )) cos θ)))^2 )/(μ^2 +(((1−(√3)μ+2(√(1+μ^2 )) sin θ)/((√3)+μ+2(√(1+μ^2 )) cos θ)))^2 ))  ⇒(y_P /a)=(((1−(√3)μ+2(√(1+μ^2 )) sin θ)/((√3)+μ+2(√(1+μ^2 )) cos θ)))(1+(x_P /a))  ((PR^2 )/a^2 )=((x_P /a)−(x_R /a))^2 +((y_P /a)−(y_R /a))^2     eqn. of BR:  ((y+b)/(y_R +b))=(x/x_R )  y=−b+((a+(√3)b+2(√(a^2 +b^2 )) sin θ)/(−(√3)a+b+2(√(a^2 +b^2 )) cos θ))x  y=−b+((1+(√3)μ+2(√(1+μ^2 )) sin θ)/(−(√3)+μ+2(√(1+μ^2 )) cos θ))x  intersection point Q:  y_Q =−b+((1+(√3)μ+2(√(1+μ^2 )) sin θ)/(−(√3)+μ+2(√(1+μ^2 )) cos θ))x_Q   x_Q =((−(√3)+μ+2(√(1+μ^2 )) cos θ)/(1+(√3)μ+2(√(1+μ^2 )) sin θ))(y_Q +b)  ((x_Q /a))^2 +((y_Q /b))^2 =1  μ^2 (((−(√3)+μ+2(√(1+μ^2 )) cos θ)/(1+(√3)μ+2(√(1+μ^2 )) sin θ)))^2 ((y_Q /a)+μ)^2 +((y_Q /a))^2 =μ^2   μ^2 (((−(√3)+μ+2(√(1+μ^2 )) cos θ)/(1+(√3)μ+2(√(1+μ^2 )) sin θ)))^2 ((y_Q /a)+μ)=μ−(y_Q /a)  ⇒(y_Q /a)=((μ[1−μ^2 (((−(√3)+μ+2(√(1+μ^2 )) cos θ)/(1+(√3)μ+2(√(1+μ^2 )) sin θ)))^2 ])/(1+μ^2 (((−(√3)+μ+2(√(1+μ^2 )) cos θ)/(1+(√3)μ+2(√(1+μ^2 )) sin θ)))^2 ))  ⇒(x_Q /a)=(((−(√3)+μ+2(√(1+μ^2 )) cos θ)/(1+(√3)μ+2(√(1+μ^2 )) sin θ)))((y_Q /a)+μ)  ((QR^2 )/a^2 )=((x_Q /a)−(x_R /a))^2 +((y_Q /a)−(y_R /a))^2     such that ΔPQR is equilateral,  PR=QR  ((PR^2 )/a^2 )=((QR^2 )/a^2 )

PARTIIthepointRmustlieonthegreencirclewithcenteratC.letα=tan1ba,μ=baAC=AB2cos30°=a2+b23xC=a+ACcos(30°α)xC=a+a2+b23(32×aa2+b2+12×ba2+b2)xC=12(ab3)yC=ACsin(30°α)=a2+b23(12×aa2+b232×ba2+b2)yC=12(a3b)eqn.ofgreencircle:[x+12(ab3)]2+[y12(a3b)]2=a2+b23orxR=12(ab3)+a2+b23cosθyR=12(a3b)+a2+b23sinθxRa=12(1μ3)+1+μ23cosθyRa=12(13μ)+1+μ23sinθeqn.ofAR:y=a3b+2a2+b2sinθ3a+b+2a2+b2cosθ(x+a)y=13μ+21+μ2sinθ3+μ+21+μ2cosθ(x+a)intersectionpointP:yP=13μ+21+μ2sinθ3+μ+21+μ2cosθ(xP+a)(xPa)2+(yPb)2=1(13μ+21+μ2sinθ3+μ+21+μ2cosθ)2(1+xPa)2=μ2[1(xPa)2](13μ+21+μ2sinθ3+μ+21+μ2cosθ)2(1+xPa)=μ2(1xPa)xPa=μ2(13μ+21+μ2sinθ3+μ+21+μ2cosθ)2μ2+(13μ+21+μ2sinθ3+μ+21+μ2cosθ)2yPa=(13μ+21+μ2sinθ3+μ+21+μ2cosθ)(1+xPa)PR2a2=(xPaxRa)2+(yPayRa)2eqn.ofBR:y+byR+b=xxRy=b+a+3b+2a2+b2sinθ3a+b+2a2+b2cosθxy=b+1+3μ+21+μ2sinθ3+μ+21+μ2cosθxintersectionpointQ:yQ=b+1+3μ+21+μ2sinθ3+μ+21+μ2cosθxQxQ=3+μ+21+μ2cosθ1+3μ+21+μ2sinθ(yQ+b)(xQa)2+(yQb)2=1μ2(3+μ+21+μ2cosθ1+3μ+21+μ2sinθ)2(yQa+μ)2+(yQa)2=μ2μ2(3+μ+21+μ2cosθ1+3μ+21+μ2sinθ)2(yQa+μ)=μyQayQa=μ[1μ2(3+μ+21+μ2cosθ1+3μ+21+μ2sinθ)2]1+μ2(3+μ+21+μ2cosθ1+3μ+21+μ2sinθ)2xQa=(3+μ+21+μ2cosθ1+3μ+21+μ2sinθ)(yQa+μ)QR2a2=(xQaxRa)2+(yQayRa)2suchthatΔPQRisequilateral,PR=QRPR2a2=QR2a2

Commented by mr W last updated on 19/Apr/20

((x_P /a)−(x_R /a))^2 +((y_P /a)−(y_R /a))^2 =((x_Q /a)−(x_R /a))^2 +((y_Q /a)−(y_R /a))^2     from this eqn. we get θ for the  position of point R.

(xPaxRa)2+(yPayRa)2=(xQaxRa)2+(yQayRa)2fromthiseqn.wegetθforthepositionofpointR.

Commented by mr W last updated on 19/Apr/20

Commented by mr W last updated on 20/Apr/20

Commented by mr W last updated on 20/Apr/20

Commented by mr W last updated on 20/Apr/20

Commented by mr W last updated on 21/Apr/20

Answered by ajfour last updated on 20/Apr/20

Commented by ajfour last updated on 20/Apr/20

let  R(h,k)  Eq. AP:  y=((k(x+a))/(h+a))  b^2 x^2 +((k^2 (x+a)^2 a^2 )/((h+a)^2 ))=a^2 b^2   (h+a)^2 b^2 x^2 +k^2 a^2 (x+a)^2 =a^2 b^2 (h+a)^2   roots are x_P  , −a  ⇒  −ax_P = ((a^2 [a^2 k^2 −b^2 (h+a)^2 ])/(b^2 (h+a)^2 +k^2 a^2 ))     x_P =((a[b^2 (h+a)^2 −a^2 k^2 ])/(b^2 (h+a)^2 +k^2 a^2 ))   ...(I)  Eq. of BQ:    y=(((k+b)/h))x−b  b^2 h^2 x^2 +a^2 [(k+b)x−bh]^2 =a^2 b^2 h^2     roots are  x=0, x_Q     x_Q = ((2a^2 bh(k+b))/(b^2 h^2 +a^2 (k+b)^2 ))   ...(II)  ((((k+b)/h)−(k/(h+a)))/(1+(((k+b)/h))((k/(h+a)))))=(√3)    ....(III)  slope of PQ:     ((y_Q −y_P )/(x_P −x_Q ))=(((√3)−(k/(h+a)))/(1+(√3)((k/(h+a)))))    ...(IV)  let  (k/(h+a))=p  ,  ((k+b)/h)=q  x_P =((a[b^2 (h+a)^2 −a^2 k^2 ])/(b^2 (h+a)^2 +k^2 a^2 ))     = ((a(b^2 −a^2 p^2 ))/(b^2 +a^2 p^2 ))    x_Q =((2a^2 bh(k+b))/(b^2 h^2 +a^2 (k+b)^2 ))         = ((2a^2 bq)/(b^2 +a^2 q^2 ))  y_P =p(x_P +a)=((p(2ab^2 ))/(b^2 +a^2 p^2 ))  y_Q =qx_Q −b = ((2a^2 bq^2 )/(b^2 +a^2 q^2 ))−b      =((b(a^2 q^2 −b^2 ))/(b^2 +a^2 q^2 ))   ((((b(a^2 q^2 −b^2 ))/(b^2 +a^2 q^2 ))−((p(2ab^2 ))/(b^2 +a^2 p^2 )))/(((a(b^2 −a^2 p^2 ))/(b^2 +a^2 p^2 ))−((2a^2 bq)/(b^2 +a^2 q^2 ))))=(((√3)−p)/(1+p(√3)))                                                 ......(i)  And   ((q−p)/(1+pq))=(√3)          .......(ii)  ((b(a^2 q^2 −b^2 )(b^2 +a^2 p^2 )−2ab^2 p(b^2 +a^2 q^2 ))/(a(b^2 −a^2 p^2 )(b^2 +a^2 q^2 )+2a^2 bq(b^2 +a^2 p^2 )))                 = (((√3)−p)/(1+p(√3)))   ....

letR(h,k)Eq.AP:y=k(x+a)h+ab2x2+k2(x+a)2a2(h+a)2=a2b2(h+a)2b2x2+k2a2(x+a)2=a2b2(h+a)2rootsarexP,aaxP=a2[a2k2b2(h+a)2]b2(h+a)2+k2a2xP=a[b2(h+a)2a2k2]b2(h+a)2+k2a2...(I)Eq.ofBQ:y=(k+bh)xbb2h2x2+a2[(k+b)xbh]2=a2b2h2rootsarex=0,xQxQ=2a2bh(k+b)b2h2+a2(k+b)2...(II)k+bhkh+a1+(k+bh)(kh+a)=3....(III)slopeofPQ:yQyPxPxQ=3kh+a1+3(kh+a)...(IV)letkh+a=p,k+bh=qxP=a[b2(h+a)2a2k2]b2(h+a)2+k2a2=a(b2a2p2)b2+a2p2xQ=2a2bh(k+b)b2h2+a2(k+b)2=2a2bqb2+a2q2yP=p(xP+a)=p(2ab2)b2+a2p2yQ=qxQb=2a2bq2b2+a2q2b=b(a2q2b2)b2+a2q2b(a2q2b2)b2+a2q2p(2ab2)b2+a2p2a(b2a2p2)b2+a2p22a2bqb2+a2q2=3p1+p3......(i)Andqp1+pq=3.......(ii)b(a2q2b2)(b2+a2p2)2ab2p(b2+a2q2)a(b2a2p2)(b2+a2q2)+2a2bq(b2+a2p2)=3p1+p3....

Commented by mr W last updated on 20/Apr/20

you can get also a final eqn. with one  unknown in this way.

youcangetalsoafinaleqn.withoneunknowninthisway.

Commented by ajfour last updated on 21/Apr/20

I have a better way too, Sir,  but lets leave it here; you  solved it wonderfully, both  parts,  Thanks a lot!

Ihaveabetterwaytoo,Sir,butletsleaveithere;yousolveditwonderfully,bothparts,Thanksalot!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com