All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 89918 by jagoll last updated on 20/Apr/20
∫xtan−1(x)(1+x2)3/2dx
Commented by john santu last updated on 20/Apr/20
[u=tan−1(x)⇒du=dx1+x2]v=∫xdx(1+x2)3/2=12∫d(1+x2)(1+x2)3/2v=−11+x2]⇒I=−tan−1(x)1+x2+∫dx(1+x2)3/2letJ=∫dx(1+x2)3/2x=tanp⇒dx=sec2pdpJ=∫sec2pdpsec3p=∫cospdpJ=sinp=x1+x2thereforeweget∫xtan−1(x)dx(1+x2)3/2=−tan−1(x)1+x2+x1+x2+c=x−tan−1(x)1+x2+c
Terms of Service
Privacy Policy
Contact: info@tinkutara.com