Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 8996 by Basant007 last updated on 11/Nov/16

Find the nth derivative of sin^2 2x

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{nth}\:\mathrm{derivative}\:\mathrm{of}\:\mathrm{sin}\:^{\mathrm{2}} \mathrm{2x} \\ $$

Commented by FilupSmith last updated on 13/Nov/16

y=sin^2 (2x)  u=sin(2x) ⇒ du=2cos(2x)dx  dx=(1/(2cos(2x)))du  (dy/dx)=(d/dx)(u^2 )  (dy/dx)=(d/((1/(2cos(2x)))du))(u^2 )  (dy/dx)=2cos(2x)(d/du)(u^2 )  (dy/dx)=4cos(2x)u  (dy/dx)=4cos(2x)sin(2x)  cos(x)sin(x)=(1/2)sin(2x)  (dy/dx)=2sin(4x)     (d^2 y/dx^2 )=8cos(4x)     (d^3 y/dx^3 )=−32sin(4x)     (d^4 y/dx^4 )=−128cos(4x)     I′m not sure if there is a general form  for  (d^n y/dx^n )

$${y}=\mathrm{sin}^{\mathrm{2}} \left(\mathrm{2}{x}\right) \\ $$$${u}=\mathrm{sin}\left(\mathrm{2}{x}\right)\:\Rightarrow\:{du}=\mathrm{2cos}\left(\mathrm{2}{x}\right){dx} \\ $$$${dx}=\frac{\mathrm{1}}{\mathrm{2cos}\left(\mathrm{2}{x}\right)}{du} \\ $$$$\frac{{dy}}{{dx}}=\frac{{d}}{{dx}}\left({u}^{\mathrm{2}} \right) \\ $$$$\frac{{dy}}{{dx}}=\frac{{d}}{\frac{\mathrm{1}}{\mathrm{2cos}\left(\mathrm{2}{x}\right)}{du}}\left({u}^{\mathrm{2}} \right) \\ $$$$\frac{{dy}}{{dx}}=\mathrm{2cos}\left(\mathrm{2}{x}\right)\frac{{d}}{{du}}\left({u}^{\mathrm{2}} \right) \\ $$$$\frac{{dy}}{{dx}}=\mathrm{4cos}\left(\mathrm{2}{x}\right){u} \\ $$$$\frac{{dy}}{{dx}}=\mathrm{4cos}\left(\mathrm{2}{x}\right)\mathrm{sin}\left(\mathrm{2}{x}\right) \\ $$$$\mathrm{cos}\left({x}\right)\mathrm{sin}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\left(\mathrm{2}{x}\right) \\ $$$$\frac{{dy}}{{dx}}=\mathrm{2sin}\left(\mathrm{4}{x}\right) \\ $$$$\: \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }=\mathrm{8cos}\left(\mathrm{4}{x}\right) \\ $$$$\: \\ $$$$\frac{{d}^{\mathrm{3}} {y}}{{dx}^{\mathrm{3}} }=−\mathrm{32sin}\left(\mathrm{4}{x}\right) \\ $$$$\: \\ $$$$\frac{{d}^{\mathrm{4}} {y}}{{dx}^{\mathrm{4}} }=−\mathrm{128cos}\left(\mathrm{4}{x}\right) \\ $$$$\: \\ $$$$\mathrm{I}'\mathrm{m}\:\mathrm{not}\:\mathrm{sure}\:\mathrm{if}\:\mathrm{there}\:\mathrm{is}\:\mathrm{a}\:\mathrm{general}\:\mathrm{form} \\ $$$$\mathrm{for}\:\:\frac{{d}^{{n}} {y}}{{dx}^{{n}} } \\ $$

Answered by 123456 last updated on 14/Nov/16

y=sin^2 2x  (dy/dx)=2sin 4x  (d^2 y/dx^2 )=8cos 4x=8sin(4x+(π/2))  (d^3 y/dx^3 )=−32sin 4x=−32sin(4x+π)  (d^4 y/dx^4 )=−128cos 4x=−128sin(4x+((3π)/2))  (d^5 y/dx^5 )=512sin 4x  −−−−−−−  1→2=2∙4^0 ;0  2→8=2∙4^1 =2^3 ;(π/2)   3→32=2∙4^2 =2^5 ;π  4→128=2∙4^3 =2^7 ;((3π)/2)  n→2∙4^(n−1) =2∙2^(2n−2) =2^(2n−1) ;(((n−1)π)/2)  (d^n y/dx^n )= { ((sin^2 2x),(n=0)),((2^(2n−1) sin (4x+(((n−1)π)/2))),(n>0)) :}

$${y}=\mathrm{sin}^{\mathrm{2}} \mathrm{2}{x} \\ $$$$\frac{{dy}}{{dx}}=\mathrm{2sin}\:\mathrm{4}{x} \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }=\mathrm{8cos}\:\mathrm{4}{x}=\mathrm{8sin}\left(\mathrm{4}{x}+\frac{\pi}{\mathrm{2}}\right) \\ $$$$\frac{{d}^{\mathrm{3}} {y}}{{dx}^{\mathrm{3}} }=−\mathrm{32sin}\:\mathrm{4}{x}=−\mathrm{32sin}\left(\mathrm{4}{x}+\pi\right) \\ $$$$\frac{{d}^{\mathrm{4}} {y}}{{dx}^{\mathrm{4}} }=−\mathrm{128cos}\:\mathrm{4}{x}=−\mathrm{128sin}\left(\mathrm{4}{x}+\frac{\mathrm{3}\pi}{\mathrm{2}}\right) \\ $$$$\frac{{d}^{\mathrm{5}} {y}}{{dx}^{\mathrm{5}} }=\mathrm{512sin}\:\mathrm{4}{x} \\ $$$$−−−−−−− \\ $$$$\mathrm{1}\rightarrow\mathrm{2}=\mathrm{2}\centerdot\mathrm{4}^{\mathrm{0}} ;\mathrm{0} \\ $$$$\mathrm{2}\rightarrow\mathrm{8}=\mathrm{2}\centerdot\mathrm{4}^{\mathrm{1}} =\mathrm{2}^{\mathrm{3}} ;\frac{\pi}{\mathrm{2}}\: \\ $$$$\mathrm{3}\rightarrow\mathrm{32}=\mathrm{2}\centerdot\mathrm{4}^{\mathrm{2}} =\mathrm{2}^{\mathrm{5}} ;\pi \\ $$$$\mathrm{4}\rightarrow\mathrm{128}=\mathrm{2}\centerdot\mathrm{4}^{\mathrm{3}} =\mathrm{2}^{\mathrm{7}} ;\frac{\mathrm{3}\pi}{\mathrm{2}} \\ $$$${n}\rightarrow\mathrm{2}\centerdot\mathrm{4}^{{n}−\mathrm{1}} =\mathrm{2}\centerdot\mathrm{2}^{\mathrm{2}{n}−\mathrm{2}} =\mathrm{2}^{\mathrm{2}{n}−\mathrm{1}} ;\frac{\left({n}−\mathrm{1}\right)\pi}{\mathrm{2}} \\ $$$$\frac{{d}^{{n}} {y}}{{dx}^{{n}} }=\begin{cases}{\mathrm{sin}^{\mathrm{2}} \mathrm{2}{x}}&{{n}=\mathrm{0}}\\{\mathrm{2}^{\mathrm{2}{n}−\mathrm{1}} \mathrm{sin}\:\left(\mathrm{4}{x}+\frac{\left({n}−\mathrm{1}\right)\pi}{\mathrm{2}}\right)}&{{n}>\mathrm{0}}\end{cases} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com