Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 9009 by tawakalitu last updated on 13/Nov/16

If :  x = ((3y + 6z)/(7z − 2))  and  y = (((1/2)z + 6y)/((3/2)z + 6y))  Find :  x^3  + y^3

$$\mathrm{If}\::\:\:\mathrm{x}\:=\:\frac{\mathrm{3y}\:+\:\mathrm{6z}}{\mathrm{7z}\:−\:\mathrm{2}}\:\:\mathrm{and}\:\:\mathrm{y}\:=\:\frac{\frac{\mathrm{1}}{\mathrm{2}}\mathrm{z}\:+\:\mathrm{6y}}{\frac{\mathrm{3}}{\mathrm{2}}\mathrm{z}\:+\:\mathrm{6y}} \\ $$$$\mathrm{Find}\::\:\:\mathrm{x}^{\mathrm{3}} \:+\:\mathrm{y}^{\mathrm{3}} \\ $$

Answered by Rasheed Soomro last updated on 14/Nov/16

If :  x = ((3y + 6z)/(7z − 2))  and  y = (((1/2)z + 6y)/((3/2)z + 6y))=((z+12y)/(3z+12y))  y=((z+12y)/(3z+12y))⇒3yz+12y^2 =z+12y  12y^2 +3(z−4)y−z=0  y=((−3(z−4)±(√(9(z−4)^2 +48z)))/(24))      =((−3(z−4)±(√(9z^2 −24z+144)))/(24))  −−−−  x = ((3y + 6z)/(7z − 2)) =((3(((−3(z−4)±(√(9z^2 −24z+144)))/(24)))+6z)/(7z−2))       =((((−3(z−4)±(√(9z^2 −24z+144)))/8)+6z)/(7z−2))       =(((−3(z−4)±(√(9z^2 −24z+144))+48z)/8)/(7z−2))        =((45z+12±(√(9z^2 −24z+144)))/(8(7z−2)))  x^3 +y^3 =(((45z+12±(√(9z^2 −24z+144)))/(8(7z−2))))^3 +(((−3(z−4)±(√(9z^2 −24z+144)))/(24)))^3

$$\mathrm{If}\::\:\:\mathrm{x}\:=\:\frac{\mathrm{3y}\:+\:\mathrm{6z}}{\mathrm{7z}\:−\:\mathrm{2}}\:\:\mathrm{and}\:\:\mathrm{y}\:=\:\frac{\frac{\mathrm{1}}{\mathrm{2}}\mathrm{z}\:+\:\mathrm{6y}}{\frac{\mathrm{3}}{\mathrm{2}}\mathrm{z}\:+\:\mathrm{6y}}=\frac{\mathrm{z}+\mathrm{12y}}{\mathrm{3z}+\mathrm{12y}} \\ $$$$\mathrm{y}=\frac{\mathrm{z}+\mathrm{12y}}{\mathrm{3z}+\mathrm{12y}}\Rightarrow\mathrm{3yz}+\mathrm{12y}^{\mathrm{2}} =\mathrm{z}+\mathrm{12y} \\ $$$$\mathrm{12y}^{\mathrm{2}} +\mathrm{3}\left(\mathrm{z}−\mathrm{4}\right)\mathrm{y}−\mathrm{z}=\mathrm{0} \\ $$$$\mathrm{y}=\frac{−\mathrm{3}\left(\mathrm{z}−\mathrm{4}\right)\pm\sqrt{\mathrm{9}\left(\mathrm{z}−\mathrm{4}\right)^{\mathrm{2}} +\mathrm{48z}}}{\mathrm{24}} \\ $$$$\:\:\:\:=\frac{−\mathrm{3}\left(\mathrm{z}−\mathrm{4}\right)\pm\sqrt{\mathrm{9z}^{\mathrm{2}} −\mathrm{24z}+\mathrm{144}}}{\mathrm{24}} \\ $$$$−−−− \\ $$$$\mathrm{x}\:=\:\frac{\mathrm{3y}\:+\:\mathrm{6z}}{\mathrm{7z}\:−\:\mathrm{2}}\:=\frac{\mathrm{3}\left(\frac{−\mathrm{3}\left(\mathrm{z}−\mathrm{4}\right)\pm\sqrt{\mathrm{9z}^{\mathrm{2}} −\mathrm{24z}+\mathrm{144}}}{\mathrm{24}}\right)+\mathrm{6z}}{\mathrm{7z}−\mathrm{2}} \\ $$$$\:\:\:\:\:=\frac{\frac{−\mathrm{3}\left(\mathrm{z}−\mathrm{4}\right)\pm\sqrt{\mathrm{9z}^{\mathrm{2}} −\mathrm{24z}+\mathrm{144}}}{\mathrm{8}}+\mathrm{6z}}{\mathrm{7z}−\mathrm{2}} \\ $$$$\:\:\:\:\:=\frac{\frac{−\mathrm{3}\left(\mathrm{z}−\mathrm{4}\right)\pm\sqrt{\mathrm{9z}^{\mathrm{2}} −\mathrm{24z}+\mathrm{144}}+\mathrm{48z}}{\mathrm{8}}}{\mathrm{7z}−\mathrm{2}} \\ $$$$\:\:\:\:\:\:=\frac{\mathrm{45z}+\mathrm{12}\pm\sqrt{\mathrm{9z}^{\mathrm{2}} −\mathrm{24z}+\mathrm{144}}}{\mathrm{8}\left(\mathrm{7z}−\mathrm{2}\right)} \\ $$$$\mathrm{x}^{\mathrm{3}} +\mathrm{y}^{\mathrm{3}} =\left(\frac{\mathrm{45z}+\mathrm{12}\pm\sqrt{\mathrm{9z}^{\mathrm{2}} −\mathrm{24z}+\mathrm{144}}}{\mathrm{8}\left(\mathrm{7z}−\mathrm{2}\right)}\right)^{\mathrm{3}} +\left(\frac{−\mathrm{3}\left(\mathrm{z}−\mathrm{4}\right)\pm\sqrt{\mathrm{9z}^{\mathrm{2}} −\mathrm{24z}+\mathrm{144}}}{\mathrm{24}}\right)^{\mathrm{3}} \\ $$$$\: \\ $$

Commented by tawakalitu last updated on 13/Nov/16

thanks sir. will be expecting.

$$\mathrm{thanks}\:\mathrm{sir}.\:\mathrm{will}\:\mathrm{be}\:\mathrm{expecting}. \\ $$

Commented by tawakalitu last updated on 14/Nov/16

i really appreciate sir. God bless you.

$$\mathrm{i}\:\mathrm{really}\:\mathrm{appreciate}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com