Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 90306 by Tony Lin last updated on 22/Apr/20

lim_(λ→0) ∫_λ ^(2λ)  (e^(−x) /x)dx

$$\underset{\lambda\rightarrow\mathrm{0}} {\mathrm{lim}}\int_{\lambda} ^{\mathrm{2}\lambda} \:\frac{{e}^{−{x}} }{{x}}{dx} \\ $$

Commented by mathmax by abdo last updated on 22/Apr/20

∃ c∈]λ,2λ[ /   ∫_λ ^(2λ)  (e^(−x) /x)dx =e^(−c)  ∫_λ ^(2λ)  (dx/x) =e^(−c) ln∣((2λ)/λ)∣=e^(−c) ln(2)  λ→0 ⇒c→0 ⇒lim_(λ→0)    ∫_λ ^(2λ)  (e^(−x) /x)dx =ln(2)

$$\left.\exists\:{c}\in\right]\lambda,\mathrm{2}\lambda\left[\:/\:\:\:\int_{\lambda} ^{\mathrm{2}\lambda} \:\frac{{e}^{−{x}} }{{x}}{dx}\:={e}^{−{c}} \:\int_{\lambda} ^{\mathrm{2}\lambda} \:\frac{{dx}}{{x}}\:={e}^{−{c}} {ln}\mid\frac{\mathrm{2}\lambda}{\lambda}\mid={e}^{−{c}} {ln}\left(\mathrm{2}\right)\right. \\ $$$$\lambda\rightarrow\mathrm{0}\:\Rightarrow{c}\rightarrow\mathrm{0}\:\Rightarrow{lim}_{\lambda\rightarrow\mathrm{0}} \:\:\:\int_{\lambda} ^{\mathrm{2}\lambda} \:\frac{{e}^{−{x}} }{{x}}{dx}\:={ln}\left(\mathrm{2}\right) \\ $$

Commented by Tony Lin last updated on 23/Apr/20

thanks sir

$${thanks}\:{sir} \\ $$

Answered by TANMAY PANACEA. last updated on 22/Apr/20

∫_λ ^(2λ) (e^(−x) /x)dx=∫_λ ^(2λ) (1/x)(1−x+(x^2 /(2!))−(x^3 /(3!))+(x^4 /(4!))+..)dx  =∫_κ ^(2λ) ((1/x)−1+(x/(2!))−(x^2 /(3!))+(x^3 /(4!))+..)dx  =∣lnx−x+(x^2 /(2×2!))−(x^3 /(3×3!))+..∣_λ ^(2λ)   =ln2−∣x−(x^2 /(2×2!))+(x^3 /(3×3!))−..∣_λ ^(2λ)   =ln2−[(λ)−((3λ^2 )/(2×2!))+((7λ^3 )/(3×3!))−..]  so when λ→0  answer is ln2

$$\int_{\lambda} ^{\mathrm{2}\lambda} \frac{{e}^{−{x}} }{{x}}{dx}=\int_{\lambda} ^{\mathrm{2}\lambda} \frac{\mathrm{1}}{{x}}\left(\mathrm{1}−{x}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}!}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}+\frac{{x}^{\mathrm{4}} }{\mathrm{4}!}+..\right){dx} \\ $$$$=\int_{\kappa} ^{\mathrm{2}\lambda} \left(\frac{\mathrm{1}}{{x}}−\mathrm{1}+\frac{{x}}{\mathrm{2}!}−\frac{{x}^{\mathrm{2}} }{\mathrm{3}!}+\frac{{x}^{\mathrm{3}} }{\mathrm{4}!}+..\right){dx} \\ $$$$=\mid{lnx}−{x}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}×\mathrm{2}!}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}×\mathrm{3}!}+..\mid_{\lambda} ^{\mathrm{2}\lambda} \\ $$$$={ln}\mathrm{2}−\mid{x}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}×\mathrm{2}!}+\frac{{x}^{\mathrm{3}} }{\mathrm{3}×\mathrm{3}!}−..\mid_{\lambda} ^{\mathrm{2}\lambda} \\ $$$$={ln}\mathrm{2}−\left[\left(\lambda\right)−\frac{\mathrm{3}\lambda^{\mathrm{2}} }{\mathrm{2}×\mathrm{2}!}+\frac{\mathrm{7}\lambda^{\mathrm{3}} }{\mathrm{3}×\mathrm{3}!}−..\right] \\ $$$${so}\:{when}\:\lambda\rightarrow\mathrm{0} \\ $$$${answer}\:{is}\:{ln}\mathrm{2} \\ $$

Commented by peter frank last updated on 22/Apr/20

thank you

$${thank}\:{you} \\ $$

Commented by Tony Lin last updated on 23/Apr/20

thanks sir

$${thanks}\:{sir} \\ $$

Commented by TANMAY PANACEA. last updated on 23/Apr/20

most welcome sir

$${most}\:{welcome}\:{sir} \\ $$

Answered by maths mind last updated on 22/Apr/20

(e^(−x) /x)=((1+e^(−x) −1)/x)  lim_(a→0) ∫_a ^(2a) ((1+e^(−x) −1)/x)dx=lim_(a→0) ∫_a ^(2a) (1/x)dx+lim_(a→0) ∫_a ^(2a) ((e^(−x) −1)/x)dx  lim_(a→0) ∫_a ^(2a) ((e^(−x) −1)/x)dx=0  e^(−x) −1=−x.e^(−c)   mean value  ⇒∣((e^(−x) −1)/x)∣≤e^(−a)   ⇒∣∫_a ^(2a) ((e^(−x) −1)/x)dx∣≤∫_a ^(2a) ∣((e^(−x) −1)/x)∣dx≤∫_a ^(2a) e^(−a) dx=ae^(−a) →0  ⇒lim_(a→0) ∫_a ^(2a) ((e^(−x) −1)/x)dx=0⇒  lim_(a→0) ∫_a ^(2a) (e^(−x) /x)dx=ln(2)

$$\frac{{e}^{−{x}} }{{x}}=\frac{\mathrm{1}+{e}^{−{x}} −\mathrm{1}}{{x}} \\ $$$$\underset{{a}\rightarrow\mathrm{0}} {\mathrm{lim}}\int_{{a}} ^{\mathrm{2}{a}} \frac{\mathrm{1}+{e}^{−{x}} −\mathrm{1}}{{x}}{dx}=\underset{{a}\rightarrow\mathrm{0}} {\mathrm{lim}}\int_{{a}} ^{\mathrm{2}{a}} \frac{\mathrm{1}}{{x}}{dx}+\underset{{a}\rightarrow\mathrm{0}} {\mathrm{lim}}\int_{{a}} ^{\mathrm{2}{a}} \frac{{e}^{−{x}} −\mathrm{1}}{{x}}{dx} \\ $$$$\underset{{a}\rightarrow\mathrm{0}} {\mathrm{lim}}\int_{{a}} ^{\mathrm{2}{a}} \frac{{e}^{−{x}} −\mathrm{1}}{{x}}{dx}=\mathrm{0} \\ $$$${e}^{−{x}} −\mathrm{1}=−{x}.{e}^{−{c}} \:\:{mean}\:{value} \\ $$$$\Rightarrow\mid\frac{{e}^{−{x}} −\mathrm{1}}{{x}}\mid\leqslant{e}^{−{a}} \\ $$$$\Rightarrow\mid\int_{{a}} ^{\mathrm{2}{a}} \frac{{e}^{−{x}} −\mathrm{1}}{{x}}{dx}\mid\leqslant\int_{{a}} ^{\mathrm{2}{a}} \mid\frac{{e}^{−{x}} −\mathrm{1}}{{x}}\mid{dx}\leqslant\int_{{a}} ^{\mathrm{2}{a}} {e}^{−{a}} {dx}={ae}^{−{a}} \rightarrow\mathrm{0} \\ $$$$\Rightarrow\underset{{a}\rightarrow\mathrm{0}} {\mathrm{lim}}\int_{{a}} ^{\mathrm{2}{a}} \frac{{e}^{−{x}} −\mathrm{1}}{{x}}{dx}=\mathrm{0}\Rightarrow \\ $$$$\underset{{a}\rightarrow\mathrm{0}} {\mathrm{lim}}\int_{{a}} ^{\mathrm{2}{a}} \frac{{e}^{−{x}} }{{x}}{dx}={ln}\left(\mathrm{2}\right) \\ $$

Commented by peter frank last updated on 22/Apr/20

help QN  90240

$${help}\:{QN}\:\:\mathrm{90240} \\ $$

Commented by Tony Lin last updated on 23/Apr/20

thanks sir

$${thanks}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com