Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 90307 by niroj last updated on 22/Apr/20

  Solve the differential equation.     (x^2 D^2 −2)y = x^2  + (1/x).

Solvethedifferentialequation.(x2D22)y=x2+1x.

Answered by TANMAY PANACEA. last updated on 22/Apr/20

x^2 (d^2 y/dx^2 )−2y=x^2 +(1/x)  x=e^t   (dy/dx)=(dy/dt)×(dt/dx)=(1/e^t )(dy/dt)  (d/dx)((dy/dx))=(d/dt)((1/e^t )×(dy/dt))×(dt/dx)=(1/e^t )[(1/e^t )×(d^2 y/dt^2 )−(1/e^t )×(dy/dt)]  (e^t )^2 (d^2 y/dx^2 )=(d^2 y/dt^2 )−(dy/dt)  x^2 (d^2 y/dx^2 )=(d^2 y/dt^2 )−(dy/dt)  so  (d^2 y/dt^2 )−(dy/dt)−2y=e^(2t) +e^(−t)   let y=e^(mt)   (m^2 −m−2)e^(mt) =0   for C.F  (m−2)(m+1)=0  C.F=Ae^(2t) +Be^(−t) =Ax^2 +(B/x)  P.I  let (d/dt)=θ  y=((e^(2t) +e^(−t) )/((θ^2 −θ−2)))=((x^2 +(1/x))/((θ−2)(θ+1)))=(1/3)×(((θ+1)−(θ−2))/((θ−2)(θ+1)))×(x^2 +(1/x))  =(1/3)[(1/(θ−2))−(1/(θ+1))](x^2 +(1/x))  =(1/3)×[x^2 ∫x^(−2−1) (x^2 +(1/x))dx−x^(−1) ∫x^(1−1) (x^2 +(1/x))dx]  =(1/3)[x^2 ∫((1/x)+(1/x^4 ))dx−(1/x)∫(x^2 +(1/x))dx]  =(1/3)[x^2 ×lnx+x^2 ×(1/(x^3 ×(−3)))−(1/x)×(x^3 /3)−(1/x)lnx]  =((x^2 lnx)/3)−(1/9)×(1/x)−(x^2 /9)−((lnx)/(3x))  =(x^2 −(1/x))×((lnx)/3)−(1/9)(x^2 +(1/x))  y=Ax^2 +(B/x)+((x^2 lnx)/3)−((lnx)/(3x))−(x^2 /9)−(1/(9x))  y=C_1 x^2 +(C_2 /x)+((x^2 lnx)/3)−((lnx)/(3x))

x2d2ydx22y=x2+1xx=etdydx=dydt×dtdx=1etdydtddx(dydx)=ddt(1et×dydt)×dtdx=1et[1et×d2ydt21et×dydt](et)2d2ydx2=d2ydt2dydtx2d2ydx2=d2ydt2dydtsod2ydt2dydt2y=e2t+etlety=emt(m2m2)emt=0forC.F(m2)(m+1)=0C.F=Ae2t+Bet=Ax2+BxP.Iletddt=θy=e2t+et(θ2θ2)=x2+1x(θ2)(θ+1)=13×(θ+1)(θ2)(θ2)(θ+1)×(x2+1x)=13[1θ21θ+1](x2+1x)=13×[x2x21(x2+1x)dxx1x11(x2+1x)dx]=13[x2(1x+1x4)dx1x(x2+1x)dx]=13[x2×lnx+x2×1x3×(3)1x×x331xlnx]=x2lnx319×1xx29lnx3x=(x21x)×lnx319(x2+1x)y=Ax2+Bx+x2lnx3lnx3xx2919xy=C1x2+C2x+x2lnx3lnx3x

Commented by niroj last updated on 22/Apr/20

I apriciate your trying effort but    Answer should make sure    y= C_1 x^(−1) +C_2 x^2 +(1/3)x^2 log x−(1/(3x))log x.

IapriciateyourtryingeffortbutAnswershouldmakesurey=C1x1+C2x2+13x2logx13xlogx.

Commented by TANMAY PANACEA. last updated on 22/Apr/20

i have corrected...using Daniel and murry diff  cal book

ihavecorrected...usingDanielandmurrydiffcalbook

Commented by niroj last updated on 23/Apr/20

 now done dear .

nowdonedear.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com