Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 90562 by Tony Lin last updated on 24/Apr/20

prove that  Σ_(n=1) ^∞ (1/(2n(2n−1)))=ln2

$${prove}\:{that} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{2}{n}\left(\mathrm{2}{n}−\mathrm{1}\right)}={ln}\mathrm{2} \\ $$

Commented by mathmax by abdo last updated on 24/Apr/20

let S_n  =Σ_(k=1) ^n  (1/(2k(2k−1))) ⇒ S_n =Σ_(k=1) ^n ((1/(2k−1))−(1/(2k)))  =Σ_(k=1) ^n  (1/(2k−1))−(1/2)Σ_(k=1) ^n  (1/k)  we have  Σ_(k=1) ^n  (1/k) =H_n   Σ_(k=1) ^n  (1/(2k−1)) =1+(1/3)+(1/5)+...+(1/(2n−1)) =1+(1/2)+(1/3)+...+(1/(2n−1))+(1/(2n))  −(1/2)−(1/4)−....−(1/(2n)) =H_(2n) −(1/2)H_n  ⇒  S_n =H_(2n) −(1/2)H_n −(1/2)H_n =H_(2n) −H_n =ln(2n)+γ +o((1/(2n)))  −ln(n)−γ−o((1/n)) =ln(2)+o((1/(2n)))−o((1/n))→ln(2) (n→+∞) ⇒  Σ_(n=1) ^∞  (1/(2n(2n−1))) =lim_(n→+∞)  S_n =ln(2)

$${let}\:{S}_{{n}} \:=\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{\mathrm{2}{k}\left(\mathrm{2}{k}−\mathrm{1}\right)}\:\Rightarrow\:{S}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \left(\frac{\mathrm{1}}{\mathrm{2}{k}−\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{2}{k}}\right) \\ $$$$=\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{\mathrm{2}{k}−\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{2}}\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}}\:\:{we}\:{have} \\ $$$$\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}}\:={H}_{{n}} \\ $$$$\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{\mathrm{2}{k}−\mathrm{1}}\:=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{5}}+...+\frac{\mathrm{1}}{\mathrm{2}{n}−\mathrm{1}}\:=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+...+\frac{\mathrm{1}}{\mathrm{2}{n}−\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{2}{n}} \\ $$$$−\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{4}}−....−\frac{\mathrm{1}}{\mathrm{2}{n}}\:={H}_{\mathrm{2}{n}} −\frac{\mathrm{1}}{\mathrm{2}}{H}_{{n}} \:\Rightarrow \\ $$$${S}_{{n}} ={H}_{\mathrm{2}{n}} −\frac{\mathrm{1}}{\mathrm{2}}{H}_{{n}} −\frac{\mathrm{1}}{\mathrm{2}}{H}_{{n}} ={H}_{\mathrm{2}{n}} −{H}_{{n}} ={ln}\left(\mathrm{2}{n}\right)+\gamma\:+{o}\left(\frac{\mathrm{1}}{\mathrm{2}{n}}\right) \\ $$$$−{ln}\left({n}\right)−\gamma−{o}\left(\frac{\mathrm{1}}{{n}}\right)\:={ln}\left(\mathrm{2}\right)+{o}\left(\frac{\mathrm{1}}{\mathrm{2}{n}}\right)−{o}\left(\frac{\mathrm{1}}{{n}}\right)\rightarrow{ln}\left(\mathrm{2}\right)\:\left({n}\rightarrow+\infty\right)\:\Rightarrow \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{2}{n}\left(\mathrm{2}{n}−\mathrm{1}\right)}\:={lim}_{{n}\rightarrow+\infty} \:{S}_{{n}} ={ln}\left(\mathrm{2}\right) \\ $$

Commented by Tony Lin last updated on 25/Apr/20

thanks sir

$${thanks}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com