Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 90661 by Cynosure last updated on 25/Apr/20

show that (n^4 −n^2 ) is divisible by 12

$${show}\:{that}\:\left({n}^{\mathrm{4}} −{n}^{\mathrm{2}} \right)\:{is}\:{divisible}\:{by}\:\mathrm{12} \\ $$

Answered by MJS last updated on 25/Apr/20

n^4 −n^2 =n^2 (n^2 −1)=n^2 (n−1)(n+1)=f(n)  (1) n=6k  f(n)=36k^2 (6k−1)(6k+1)=12×3k^2 (6k−1)(6k+1)  (2) n=6k+1  f(n)=(6k+1)^2 (6k)(6k+2)=12(6k+1)^2 k(3k+1)  (3) n=6k+2  f(n)=(6k+2)^2 (6k+1)(6k+3)=12(3k+1)^2 (6k+1)(2k+1)  (4) n=6k+3  f(n)=(6k+3)^2 (6k+2)(6k+4)=12(2k+1)(6k+3)(3k+1)(3k+2)  (5) n=6k+4  f(n)=(6k+4)^2 (6k+3)(6k+5)=12(3k+2)^2 (2k+1)(6k+5)  (6) n=6k+5  f(n)=(6k+5)^2 (6k+4)(6k+6)=12(6k+5)^2 (3k+2)(k+1)

$${n}^{\mathrm{4}} −{n}^{\mathrm{2}} ={n}^{\mathrm{2}} \left({n}^{\mathrm{2}} −\mathrm{1}\right)={n}^{\mathrm{2}} \left({n}−\mathrm{1}\right)\left({n}+\mathrm{1}\right)={f}\left({n}\right) \\ $$$$\left(\mathrm{1}\right)\:{n}=\mathrm{6}{k} \\ $$$${f}\left({n}\right)=\mathrm{36}{k}^{\mathrm{2}} \left(\mathrm{6}{k}−\mathrm{1}\right)\left(\mathrm{6}{k}+\mathrm{1}\right)=\mathrm{12}×\mathrm{3}{k}^{\mathrm{2}} \left(\mathrm{6}{k}−\mathrm{1}\right)\left(\mathrm{6}{k}+\mathrm{1}\right) \\ $$$$\left(\mathrm{2}\right)\:{n}=\mathrm{6}{k}+\mathrm{1} \\ $$$${f}\left({n}\right)=\left(\mathrm{6}{k}+\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{6}{k}\right)\left(\mathrm{6}{k}+\mathrm{2}\right)=\mathrm{12}\left(\mathrm{6}{k}+\mathrm{1}\right)^{\mathrm{2}} {k}\left(\mathrm{3}{k}+\mathrm{1}\right) \\ $$$$\left(\mathrm{3}\right)\:{n}=\mathrm{6}{k}+\mathrm{2} \\ $$$${f}\left({n}\right)=\left(\mathrm{6}{k}+\mathrm{2}\right)^{\mathrm{2}} \left(\mathrm{6}{k}+\mathrm{1}\right)\left(\mathrm{6}{k}+\mathrm{3}\right)=\mathrm{12}\left(\mathrm{3}{k}+\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{6}{k}+\mathrm{1}\right)\left(\mathrm{2}{k}+\mathrm{1}\right) \\ $$$$\left(\mathrm{4}\right)\:{n}=\mathrm{6}{k}+\mathrm{3} \\ $$$${f}\left({n}\right)=\left(\mathrm{6}{k}+\mathrm{3}\right)^{\mathrm{2}} \left(\mathrm{6}{k}+\mathrm{2}\right)\left(\mathrm{6}{k}+\mathrm{4}\right)=\mathrm{12}\left(\mathrm{2}{k}+\mathrm{1}\right)\left(\mathrm{6}{k}+\mathrm{3}\right)\left(\mathrm{3}{k}+\mathrm{1}\right)\left(\mathrm{3}{k}+\mathrm{2}\right) \\ $$$$\left(\mathrm{5}\right)\:{n}=\mathrm{6}{k}+\mathrm{4} \\ $$$${f}\left({n}\right)=\left(\mathrm{6}{k}+\mathrm{4}\right)^{\mathrm{2}} \left(\mathrm{6}{k}+\mathrm{3}\right)\left(\mathrm{6}{k}+\mathrm{5}\right)=\mathrm{12}\left(\mathrm{3}{k}+\mathrm{2}\right)^{\mathrm{2}} \left(\mathrm{2}{k}+\mathrm{1}\right)\left(\mathrm{6}{k}+\mathrm{5}\right) \\ $$$$\left(\mathrm{6}\right)\:{n}=\mathrm{6}{k}+\mathrm{5} \\ $$$${f}\left({n}\right)=\left(\mathrm{6}{k}+\mathrm{5}\right)^{\mathrm{2}} \left(\mathrm{6}{k}+\mathrm{4}\right)\left(\mathrm{6}{k}+\mathrm{6}\right)=\mathrm{12}\left(\mathrm{6}{k}+\mathrm{5}\right)^{\mathrm{2}} \left(\mathrm{3}{k}+\mathrm{2}\right)\left({k}+\mathrm{1}\right) \\ $$

Answered by JDamian last updated on 25/Apr/20

m=n^4 −n^2 =n^2 (n^2 −1)=(n−1)n^2 (n+1)    m is the product of three sequential  natural numbers. Therefore:  1      m=3k  2.1 when n is even ⇒ m=4k  2.2 when n is odd ⇒(n−1) and (n+1) are          both even ⇒ m=4k  3      From above, m=12k

$${m}={n}^{\mathrm{4}} −{n}^{\mathrm{2}} ={n}^{\mathrm{2}} \left({n}^{\mathrm{2}} −\mathrm{1}\right)=\left({n}−\mathrm{1}\right){n}^{\mathrm{2}} \left({n}+\mathrm{1}\right) \\ $$$$ \\ $$$$\boldsymbol{{m}}\:{is}\:{the}\:{product}\:{of}\:{three}\:{sequential} \\ $$$${natural}\:{numbers}.\:{Therefore}: \\ $$$$\mathrm{1}\:\:\:\:\:\:{m}=\mathrm{3}{k} \\ $$$$\mathrm{2}.\mathrm{1}\:{when}\:\boldsymbol{{n}}\:{is}\:{even}\:\Rightarrow\:{m}=\mathrm{4}{k} \\ $$$$\mathrm{2}.\mathrm{2}\:{when}\:\boldsymbol{{n}}\:{is}\:{odd}\:\Rightarrow\left({n}−\mathrm{1}\right)\:{and}\:\left({n}+\mathrm{1}\right)\:{are} \\ $$$$\:\:\:\:\:\:\:\:{both}\:{even}\:\Rightarrow\:{m}=\mathrm{4}{k} \\ $$$$\mathrm{3}\:\:\:\:\:\:{From}\:{above},\:{m}=\mathrm{12}{k} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com