All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 90661 by Cynosure last updated on 25/Apr/20
showthat(n4−n2)isdivisibleby12
Answered by MJS last updated on 25/Apr/20
n4−n2=n2(n2−1)=n2(n−1)(n+1)=f(n)(1)n=6kf(n)=36k2(6k−1)(6k+1)=12×3k2(6k−1)(6k+1)(2)n=6k+1f(n)=(6k+1)2(6k)(6k+2)=12(6k+1)2k(3k+1)(3)n=6k+2f(n)=(6k+2)2(6k+1)(6k+3)=12(3k+1)2(6k+1)(2k+1)(4)n=6k+3f(n)=(6k+3)2(6k+2)(6k+4)=12(2k+1)(6k+3)(3k+1)(3k+2)(5)n=6k+4f(n)=(6k+4)2(6k+3)(6k+5)=12(3k+2)2(2k+1)(6k+5)(6)n=6k+5f(n)=(6k+5)2(6k+4)(6k+6)=12(6k+5)2(3k+2)(k+1)
Answered by JDamian last updated on 25/Apr/20
m=n4−n2=n2(n2−1)=(n−1)n2(n+1)mistheproductofthreesequentialnaturalnumbers.Therefore:1m=3k2.1whenniseven⇒m=4k2.2whennisodd⇒(n−1)and(n+1)arebotheven⇒m=4k3Fromabove,m=12k
Terms of Service
Privacy Policy
Contact: info@tinkutara.com