Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 90716 by jagoll last updated on 25/Apr/20

If x + (1/x) = 4 , what the   value of ((x^6 −1)/x^3 )

Ifx+1x=4,whatthevalueofx61x3

Commented by john santu last updated on 25/Apr/20

x^2 +(1/x^2 ) + 2 = 16 ⇒x^2 +(1/x^2 ) = 14  ((x^6 −1)/x^3 ) = x^3 −(1/x^3 ) = (x−(1/x))(x^2 +(1/x^2 )+1)  x^2 +1 = 4x ⇒x^2 −4x+1 = 0  x = ((4 ± 2(√3))/2) = 2 ± (√3)  (1) x = 2 + (√( 3)) ⇒(1/x) = 2−(√3)  ⇒ x−(1/x) = 2+(√3) − (2−(√3)) = 2(√3)   (2) x = 2−(√3) ⇒(1/x) = 2+(√3)  ⇒x−(1/x) = 2−(√3) −(2+(√3)) = −2(√3)  ∴ ((x^6 −1)/x^3 ) =  { ((2(√3) (15) = 30(√3))),((−2(√3) (15) = −30(√3) )) :}

x2+1x2+2=16x2+1x2=14x61x3=x31x3=(x1x)(x2+1x2+1)x2+1=4xx24x+1=0x=4±232=2±3(1)x=2+31x=23x1x=2+3(23)=23(2)x=231x=2+3x1x=23(2+3)=23x61x3={23(15)=30323(15)=303

Terms of Service

Privacy Policy

Contact: info@tinkutara.com