Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 90743 by abdomathmax last updated on 25/Apr/20

find nature of the serie Σ (−1)^n  U_n   with  U_(n+1) =(e^(−U_n ) /(n+1))     (U_0 =1)

$${find}\:{nature}\:{of}\:{the}\:{serie}\:\Sigma\:\left(−\mathrm{1}\right)^{{n}} \:{U}_{{n}} \\ $$$${with}\:\:{U}_{{n}+\mathrm{1}} =\frac{{e}^{−{U}_{{n}} } }{{n}+\mathrm{1}}\:\:\:\:\:\left({U}_{\mathrm{0}} =\mathrm{1}\right) \\ $$

Answered by ~blr237~ last updated on 25/Apr/20

we can show by induction that  U_n ∈ ]0,1]  so Σ(−1)^n U_n  is an alternated serie then it converges   if (U_n ) decrease and converges to  zero.  we have  e^(−u_n ) <u_(n )  ; (1/(n+1))≤1  then  u_(n+1) <u_n       ∣u_n ∣≤(1/n)  cause  e^(−u_n ) <1  .so  lim_(n→∞)  u_n  =0

$$\left.{w}\left.{e}\:{can}\:{show}\:{by}\:{induction}\:{that}\:\:{U}_{{n}} \in\:\right]\mathrm{0},\mathrm{1}\right] \\ $$$${so}\:\Sigma\left(−\mathrm{1}\right)^{{n}} {U}_{{n}} \:{is}\:{an}\:{alternated}\:{serie}\:{then}\:{it}\:{converges}\: \\ $$$${if}\:\left({U}_{{n}} \right)\:{decrease}\:{and}\:{converges}\:{to}\:\:{zero}. \\ $$$${we}\:{have}\:\:{e}^{−{u}_{{n}} } <{u}_{{n}\:} \:;\:\frac{\mathrm{1}}{{n}+\mathrm{1}}\leqslant\mathrm{1}\:\:{then}\:\:{u}_{{n}+\mathrm{1}} <{u}_{{n}} \: \\ $$$$\:\:\:\mid{u}_{{n}} \mid\leqslant\frac{\mathrm{1}}{{n}}\:\:{cause}\:\:{e}^{−{u}_{{n}} } <\mathrm{1}\:\:.{so}\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{u}_{{n}} \:=\mathrm{0} \\ $$$$ \\ $$

Commented by mathmax by abdo last updated on 25/Apr/20

thankx sir

$${thankx}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com