Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 90759 by  M±th+et+s last updated on 25/Apr/20

1/∫_0 ^∞ ∫_x ^∞ ((cos(t) ln^2 (x))/(t(√x)))dt dx    2/∫_(1/2) ^(3/2) ln(Γ(x))dx=((ln(π)−1)/2)    3/∫_0 ^(π/2) cos(nt) cos^m (t) dt=((πΓ(m+1))/(2^(m+1) Γ(((n+m+2)/2))Γ(((2−n+m)/2))))    4/∫_0 ^(+∞) ((x exp(πcos(πx) sin(πsin(πx)))/(x^2 +π^2 ))dx=(π/2)exp(πexp(−π^2 ))−1)

1/0xcos(t)ln2(x)txdtdx2/1/23/2ln(Γ(x))dx=ln(π)123/0π2cos(nt)cosm(t)dt=πΓ(m+1)2m+1Γ(n+m+22)Γ(2n+m2)4/0+xexp(πcos(πx)sin(πsin(πx))x2+π2dx=π2exp(πexp(π2))1)

Commented by abdomathmax last updated on 26/Apr/20

1) let take a try  I=∫_0 ^∞ ∫_x ^∞  ((cost ln^2 x)/(t(√x)))dt dx by inversion  we get I =∫_0 ^∞ (∫_0 ^t  ((ln^2 x)/(√x)))((cost)/t)dt  but  ∫_0 ^t  ((ln^2 x)/(√x))dx =_((√x)=u)    ∫_0 ^(√t)  ((ln^2 (u^2 ))/u)(2u)du  =8 ∫_0 ^(√t) ln^2 u du   and by psrts  ∫_0 ^(√t)  ln^2 u du =[u ln^2 u]_0 ^(√t) −∫_0 ^(√t) u ×((2lnu)/u) du  =(√t)ln^2 ((√t))−2 ∫_0 ^(√t)  lnu du  =(1/4)(√t)ln^2 (t)−2[ulnu−u]_0 ^(√t)   =(1/4)(√t)ln^2 (t)−2((√t)ln((√t))−(√t))  =(1/4)(√t)ln^2 (t)−(√t)ln(t)+2(√t)  =(1/4)(√t)ln^2 (t)−(√t)ln(t)+2(√t) ⇒  ∫_0 ^t  ((ln^2 x)/(√x))dx =2(√t)ln^2 (t)−8(√t)ln(t)+16(√t) ⇒  I =∫_0 ^∞ (2(√t)ln^2 (t)−8(√t)ln(t)+16(√t))((cost)/t)dt  =_((√t)=z)   ∫_0 ^∞ (2zln^2 (z^2 )−8zln(z^2 )+16z)((cos(z^2 ))/z^2 )(2z)dz  =∫_0 ^∞ (4ln^2 (z^2 )−16ln(z^2 )+32)cos(z^2 )dz  =8∫_0 ^∞  ln^2 (z)cos(z^2 )dz−32 ∫_0 ^∞  ln(z)cos(z^2 )dz  +32 ∫_0 ^∞  cos(z^2 )dz  ∫_0 ^∞  cos(z^2 )dz =Re(∫_0 ^∞  e^(−iz^2 ) dz)  ∫_0 ^∞  e^(−iz^2 ) dz =∫_0 ^∞ e^(−((√i)z)^2 ) dz  =_((√i)z =u)    ∫_0 ^∞   e^(−u^2 )  (du/(√i))  =(1/e^((iπ)/4) ) ×((√π)/2)  =((√π)/2)((1/(√2))−(i/(√2))) ⇒∫_0 ^∞  cos(z^2 )dz =((√π)/(2(√2)))  ...be continuesd...

1)lettakeatryI=0xcostln2xtxdtdxbyinversionwegetI=0(0tln2xx)costtdtbut0tln2xxdx=x=u0tln2(u2)u(2u)du=80tln2uduandbypsrts0tln2udu=[uln2u]0t0tu×2lnuudu=tln2(t)20tlnudu=14tln2(t)2[ulnuu]0t=14tln2(t)2(tln(t)t)=14tln2(t)tln(t)+2t=14tln2(t)tln(t)+2t0tln2xxdx=2tln2(t)8tln(t)+16tI=0(2tln2(t)8tln(t)+16t)costtdt=t=z0(2zln2(z2)8zln(z2)+16z)cos(z2)z2(2z)dz=0(4ln2(z2)16ln(z2)+32)cos(z2)dz=80ln2(z)cos(z2)dz320ln(z)cos(z2)dz+320cos(z2)dz0cos(z2)dz=Re(0eiz2dz)0eiz2dz=0e(iz)2dz=iz=u0eu2dui=1eiπ4×π2=π2(12i2)0cos(z2)dz=π22...becontinuesd...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com