All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 90759 by M±th+et+s last updated on 25/Apr/20
1/∫0∞∫x∞cos(t)ln2(x)txdtdx2/∫1/23/2ln(Γ(x))dx=ln(π)−123/∫0π2cos(nt)cosm(t)dt=πΓ(m+1)2m+1Γ(n+m+22)Γ(2−n+m2)4/∫0+∞xexp(πcos(πx)sin(πsin(πx))x2+π2dx=π2exp(πexp(−π2))−1)
Commented by abdomathmax last updated on 26/Apr/20
1)lettakeatryI=∫0∞∫x∞costln2xtxdtdxbyinversionwegetI=∫0∞(∫0tln2xx)costtdtbut∫0tln2xxdx=x=u∫0tln2(u2)u(2u)du=8∫0tln2uduandbypsrts∫0tln2udu=[uln2u]0t−∫0tu×2lnuudu=tln2(t)−2∫0tlnudu=14tln2(t)−2[ulnu−u]0t=14tln2(t)−2(tln(t)−t)=14tln2(t)−tln(t)+2t=14tln2(t)−tln(t)+2t⇒∫0tln2xxdx=2tln2(t)−8tln(t)+16t⇒I=∫0∞(2tln2(t)−8tln(t)+16t)costtdt=t=z∫0∞(2zln2(z2)−8zln(z2)+16z)cos(z2)z2(2z)dz=∫0∞(4ln2(z2)−16ln(z2)+32)cos(z2)dz=8∫0∞ln2(z)cos(z2)dz−32∫0∞ln(z)cos(z2)dz+32∫0∞cos(z2)dz∫0∞cos(z2)dz=Re(∫0∞e−iz2dz)∫0∞e−iz2dz=∫0∞e−(iz)2dz=iz=u∫0∞e−u2dui=1eiπ4×π2=π2(12−i2)⇒∫0∞cos(z2)dz=π22...becontinuesd...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com