Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 90770 by ajfour last updated on 26/Apr/20

(ax+by+c)dx+(px+qy+r)dy=0

$$\left({ax}+{by}+{c}\right){dx}+\left({px}+{qy}+{r}\right){dy}=\mathrm{0} \\ $$

Answered by mr W last updated on 26/Apr/20

(dy/dx)=−((ax+by+c)/(px+qy+r))  let x=u+u_0 , y=v+v_0   ax+by+c=a(u+u_0 )+b(v+v_0 )+c=au+bv+au_0 +bv_0 +c  px+qy+r=p(u+u_0 )+q(v+v_0 )+r=pu+qv+pu_0 +qv_0 +r  set au_0 +bv_0 +c=0  set pu_0 +qv_0 +r=0  ⇒u_0 =((−cq+rb)/(aq−bp))  ⇒v_0 =((−cp+ra)/(aq−bp))  (dy/dx)=(dv/du)=((au+bv)/(pu+qv))  let v=ut  (dv/du)=t+u(dt/du)  t+u(dt/du)=((a+bt)/(p+qt))  u(dt/du)=((a+bt)/(p+qt))−t=−((qt^2 +(p−b)t−a)/(qt+p))  ((qt+p)/(qt^2 +(p−b)t−a))dt=−(du/u)  ∫((t+(p/q))/(t^2 +((p/q)−(b/q))t−(a/q)))dt=−∫(du/u)  ∫((t+C)/(t^2 +At+B))dt=−∫(du/u)  (1/2)ln (t^2 +At+B)+(C−(A/2))∫(dt/(t^2 +At+B))=−∫(du/u)  (1/2)ln (t^2 +At+B)+((2C−A)/(√(4B−A^2 ))) tan^(−1) ((2t+A)/(√(4B−A^2 )))=−ln u+K  (here only case 4B−A^2 >0, for cases  4B−A^2 ≤0 similarly)  ⇒(1/2)ln [(((y−v_0 )/(x−u_0 )))^2 +A(((y−v_0 )/(x−u_0 )))+B]+((2C−A)/(√(4B−A^2 ))) tan^(−1) ((2(((y−v_0 )/(x−u_0 )))+A)/(√(4B−A^2 )))+ln (x−u_0 )=K

$$\frac{{dy}}{{dx}}=−\frac{{ax}+{by}+{c}}{{px}+{qy}+{r}} \\ $$$${let}\:{x}={u}+{u}_{\mathrm{0}} ,\:{y}={v}+{v}_{\mathrm{0}} \\ $$$${ax}+{by}+{c}={a}\left({u}+{u}_{\mathrm{0}} \right)+{b}\left({v}+{v}_{\mathrm{0}} \right)+{c}={au}+{bv}+{au}_{\mathrm{0}} +{bv}_{\mathrm{0}} +{c} \\ $$$${px}+{qy}+{r}={p}\left({u}+{u}_{\mathrm{0}} \right)+{q}\left({v}+{v}_{\mathrm{0}} \right)+{r}={pu}+{qv}+{pu}_{\mathrm{0}} +{qv}_{\mathrm{0}} +{r} \\ $$$${set}\:{au}_{\mathrm{0}} +{bv}_{\mathrm{0}} +{c}=\mathrm{0} \\ $$$${set}\:{pu}_{\mathrm{0}} +{qv}_{\mathrm{0}} +{r}=\mathrm{0} \\ $$$$\Rightarrow{u}_{\mathrm{0}} =\frac{−{cq}+{rb}}{{aq}−{bp}} \\ $$$$\Rightarrow{v}_{\mathrm{0}} =\frac{−{cp}+{ra}}{{aq}−{bp}} \\ $$$$\frac{{dy}}{{dx}}=\frac{{dv}}{{du}}=\frac{{au}+{bv}}{{pu}+{qv}} \\ $$$${let}\:{v}={ut} \\ $$$$\frac{{dv}}{{du}}={t}+{u}\frac{{dt}}{{du}} \\ $$$${t}+{u}\frac{{dt}}{{du}}=\frac{{a}+{bt}}{{p}+{qt}} \\ $$$${u}\frac{{dt}}{{du}}=\frac{{a}+{bt}}{{p}+{qt}}−{t}=−\frac{{qt}^{\mathrm{2}} +\left({p}−{b}\right){t}−{a}}{{qt}+{p}} \\ $$$$\frac{{qt}+{p}}{{qt}^{\mathrm{2}} +\left({p}−{b}\right){t}−{a}}{dt}=−\frac{{du}}{{u}} \\ $$$$\int\frac{{t}+\frac{{p}}{{q}}}{{t}^{\mathrm{2}} +\left(\frac{{p}}{{q}}−\frac{{b}}{{q}}\right){t}−\frac{{a}}{{q}}}{dt}=−\int\frac{{du}}{{u}} \\ $$$$\int\frac{{t}+{C}}{{t}^{\mathrm{2}} +{At}+{B}}{dt}=−\int\frac{{du}}{{u}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\left({t}^{\mathrm{2}} +{At}+{B}\right)+\left({C}−\frac{{A}}{\mathrm{2}}\right)\int\frac{{dt}}{{t}^{\mathrm{2}} +{At}+{B}}=−\int\frac{{du}}{{u}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\left({t}^{\mathrm{2}} +{At}+{B}\right)+\frac{\mathrm{2}{C}−{A}}{\sqrt{\mathrm{4}{B}−{A}^{\mathrm{2}} }}\:\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{2}{t}+{A}}{\sqrt{\mathrm{4}{B}−{A}^{\mathrm{2}} }}=−\mathrm{ln}\:{u}+{K} \\ $$$$\left({here}\:{only}\:{case}\:\mathrm{4}{B}−{A}^{\mathrm{2}} >\mathrm{0},\:{for}\:{cases}\right. \\ $$$$\left.\mathrm{4}{B}−{A}^{\mathrm{2}} \leqslant\mathrm{0}\:{similarly}\right) \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\left[\left(\frac{{y}−{v}_{\mathrm{0}} }{{x}−{u}_{\mathrm{0}} }\right)^{\mathrm{2}} +{A}\left(\frac{{y}−{v}_{\mathrm{0}} }{{x}−{u}_{\mathrm{0}} }\right)+{B}\right]+\frac{\mathrm{2}{C}−{A}}{\sqrt{\mathrm{4}{B}−{A}^{\mathrm{2}} }}\:\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{2}\left(\frac{{y}−{v}_{\mathrm{0}} }{{x}−{u}_{\mathrm{0}} }\right)+{A}}{\sqrt{\mathrm{4}{B}−{A}^{\mathrm{2}} }}+\mathrm{ln}\:\left({x}−{u}_{\mathrm{0}} \right)={K} \\ $$

Commented by ajfour last updated on 26/Apr/20

Thanks Sir, your presentation  of every solution is beyond all  praise!

$${Thanks}\:{Sir},\:{your}\:{presentation} \\ $$$${of}\:{every}\:{solution}\:{is}\:{beyond}\:{all} \\ $$$${praise}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com