Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 90784 by jagoll last updated on 26/Apr/20

∫_0 ^2  (√((4−x)/x))−(√(x/(4−x))) dx ?

204xxx4xdx?

Commented by jagoll last updated on 26/Apr/20

∫_0 ^2  ((((√(4−x)))^2 −((√x))^2 )/((√x) ((√(4−x)) ) )) =   ∫_0 ^2  ((4−2x)/(√(4x−x^2 ))) dx = ∫_0 ^2  ((d(4x−x^2 ))/(√(4x−x^2 )))  = 2 (√(4x−x^2 )) ]_0 ^2  = 2 (√(8−4))  = 2×2 = 4

02(4x)2(x)2x(4x)=0242x4xx2dx=02d(4xx2)4xx2=24xx2]02=284=2×2=4

Commented by abdomathmax last updated on 27/Apr/20

A=∫_0 ^2 (√((4−x)/x))dx−∫_0 ^2 (√(x/(4−x)))dx =H−K  changement (√((4−x)/x))=t give ((4−x)/x)=t^2  ⇒  4−x =t^2 x ⇒(1+t^2 )x =4 ⇒x=(4/(t^2  +1)) ⇒  H =−∫_1 ^(+∞) t×(−((4(2t))/((t^2 +1)^2 )))dt  =8 ∫_1 ^(+∞)  ((t^2 +1−1)/((t^2  +1)^2 ))dt =8 ∫_1 ^(+∞) (dt/(1+t^2 ))−8∫_1 ^(+∞)  (dt/((1+t^2 )^2 ))  ∫_1 ^(+∞)  (dt/(1+t^2 )) =(π/2)−(π/4) =(π/4)  ∫_1 ^(+∞)  (dt/((1+t^2 )^2 )) =_(t=tanθ)    ∫_(π/4) ^(π/2)  ((1+tan^2 θ)/((1+tan^2 θ)^2 ))dθ  =∫_(π/4) ^(π/2) cos^2 θ =(1/2)∫_(π/4) ^(π/2) (1+cos(2θ))dθ  =(1/2)×(π/4) +(1/4)[sin(2θ)]_(π/4) ^(π/2)  =(π/8)+(1/4)(−1) ⇒  H =2π−8{(π/8)−(1/4)}=π+2   and K=∫_0 ^2 (√(x/(4−x)))dx  we do the changement (√(x/(4−x)))=t ⇒  (x/(4−x)) =t^2  ⇒x =4t^2 −t^2 x ⇒(1+t^2 )x =4t^2  ⇒  x =((4t^2 )/(t^2  +1)) ⇒(dx/dt) =((8t(t^2 +1)−4t^2 (2t))/((t^2  +1)^2 ))=((8t)/((t^2  +1)^2 ))  K =∫_0 ^1  t×((8t)/((t^2 +1)^2 ))dt =8 ∫_0 ^1  ((t^2  +1−1)/((t^2  +1)^2 ))dt  =8 ∫_0 ^1  (dt/(t^2  +1))−8 ∫_0 ^1  (dt/((t^2  +1)^2 ))  =8×(π/4)−8{  ∫_0 ^(π/4)  (((1+tan^2 θ)dθ)/((1+tan^2 θ)^2 ))}  (t=tanθ)  =2π −8{∫_0 ^(π/4) cos^2 θ dθ}  =2π−4∫_0 ^(π/4) (1+cos(2θ))dθ  =π−2 [sin(2θ)]_0 ^(π/4)  =π−2{1} =π−2  A =H−K =π +2−π +2 =4

A=024xxdx02x4xdx=HKchangement4xx=tgive4xx=t24x=t2x(1+t2)x=4x=4t2+1H=1+t×(4(2t)(t2+1)2)dt=81+t2+11(t2+1)2dt=81+dt1+t281+dt(1+t2)21+dt1+t2=π2π4=π41+dt(1+t2)2=t=tanθπ4π21+tan2θ(1+tan2θ)2dθ=π4π2cos2θ=12π4π2(1+cos(2θ))dθ=12×π4+14[sin(2θ)]π4π2=π8+14(1)H=2π8{π814}=π+2andK=02x4xdxwedothechangementx4x=tx4x=t2x=4t2t2x(1+t2)x=4t2x=4t2t2+1dxdt=8t(t2+1)4t2(2t)(t2+1)2=8t(t2+1)2K=01t×8t(t2+1)2dt=801t2+11(t2+1)2dt=801dtt2+1801dt(t2+1)2=8×π48{0π4(1+tan2θ)dθ(1+tan2θ)2}(t=tanθ)=2π8{0π4cos2θdθ}=2π40π4(1+cos(2θ))dθ=π2[sin(2θ)]0π4=π2{1}=π2A=HK=π+2π+2=4

Terms of Service

Privacy Policy

Contact: info@tinkutara.com