All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 90784 by jagoll last updated on 26/Apr/20
∫204−xx−x4−xdx?
Commented by jagoll last updated on 26/Apr/20
∫02(4−x)2−(x)2x(4−x)=∫024−2x4x−x2dx=∫02d(4x−x2)4x−x2=24x−x2]02=28−4=2×2=4
Commented by abdomathmax last updated on 27/Apr/20
A=∫024−xxdx−∫02x4−xdx=H−Kchangement4−xx=tgive4−xx=t2⇒4−x=t2x⇒(1+t2)x=4⇒x=4t2+1⇒H=−∫1+∞t×(−4(2t)(t2+1)2)dt=8∫1+∞t2+1−1(t2+1)2dt=8∫1+∞dt1+t2−8∫1+∞dt(1+t2)2∫1+∞dt1+t2=π2−π4=π4∫1+∞dt(1+t2)2=t=tanθ∫π4π21+tan2θ(1+tan2θ)2dθ=∫π4π2cos2θ=12∫π4π2(1+cos(2θ))dθ=12×π4+14[sin(2θ)]π4π2=π8+14(−1)⇒H=2π−8{π8−14}=π+2andK=∫02x4−xdxwedothechangementx4−x=t⇒x4−x=t2⇒x=4t2−t2x⇒(1+t2)x=4t2⇒x=4t2t2+1⇒dxdt=8t(t2+1)−4t2(2t)(t2+1)2=8t(t2+1)2K=∫01t×8t(t2+1)2dt=8∫01t2+1−1(t2+1)2dt=8∫01dtt2+1−8∫01dt(t2+1)2=8×π4−8{∫0π4(1+tan2θ)dθ(1+tan2θ)2}(t=tanθ)=2π−8{∫0π4cos2θdθ}=2π−4∫0π4(1+cos(2θ))dθ=π−2[sin(2θ)]0π4=π−2{1}=π−2A=H−K=π+2−π+2=4
Terms of Service
Privacy Policy
Contact: info@tinkutara.com