Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 90787 by Maclaurin Stickker last updated on 26/Apr/20

Find the infinite sum  Σ_(n=1) ^∞ (1/((2n−1)(2n+1)(2n+3)))

Findtheinfinitesumn=11(2n1)(2n+1)(2n+3)

Commented by mathmax by abdo last updated on 26/Apr/20

let decompose F(x)=(1/((2x−1)(2x+1)(2x+3)))  F(x)=(a/(2x−1)) +(b/(2x+1)) +(c/(2x+3))  a =(2x−1)F(x)∣_(x=(1/2))    =(1/((2)(4))) =(1/8)  b =(2x+1)F(x)∣_(x=−(1/2))    =(1/((−2)(2)))=−(1/4)  c =(2x+3)F(x)∣_(x=−(3/2))    =(1/((−4)(−2))) =(1/8) ⇒  F(x)=(1/(8(2x−1)))−(1/(4(2x+1)))+(1/(8(2x+3))) let  S_n =Σ_(k=1) ^(n )   (1/((2k−1)(2k+1)(2k+3))) ⇒S_n =ΣF(k)  =(1/8)Σ_(k=1) ^n  (1/(2k−1)) −(1/4)Σ_(k=1) ^n  (1/(2k+1)) +(1/8)Σ_(k=1) ^n  (1/(2k+3))  we have  Σ_(k=1) ^n  (1/(2k−1)) =1 +(1/3)+(1/5)+....+(1/(2n−1))  =1+(1/2)+(1/3)+...+(1/(2n−1))+(1/(2n))−(1/2)−(1/4)−....−(1/(2n))  =H_(2n) −(1/2)H_n   Σ_(k=1) ^n  (1/(2k+1)) =_(k=j−1)    Σ_(j=2) ^(n+1)  (1/(2j−1)) =Σ_(j=1) ^(n+1)  (1/(2j−1))−1  =H_(2n+2) −(1/2)H_(n+1) −1  Σ_(k=1) ^n  (1/(2k+3)) =_(k=j−2)    Σ_(j=3) ^(n+2)  (1/(2j−1)) =Σ_(j=1) ^(n+2)  (1/(2j−1))−1−(1/3)  =H_(2n+4) −(1/2)H_(n+2) −(4/3) ⇒  8S_n =H_(2n) −(1/2)H_n −2(H_(2n+2) −(1/2)H_(n+1) −1)+H_(2n+4) −(1/2)H_(n+2) −(4/3)  =H_(2n) −(1/2)H_n −2H_(2n+2)  +H_(n+1) +2 +H_(2n+4) −(1/2)H_(n+2) −(4/3)  ∼ln(2n)+γ −(1/2)ln(n)−(γ/2) −2ln(2n+2)−2γ +ln(n+1)+γ  +ln(2n+4)+γ −(1/2)ln(n+2)−(γ/2)  +(2/3) ⇒  8S_n ∼  ln(2)+ln(n)−(1/2)ln(n)−2ln(2)−2ln(n)+ln(n)  +ln(2)+ln(n)−(1/2)ln(n) +(2/3) ⇒8S_n ∼(2/3) ⇒S_n ∼(1/(12))  ⇒lim_(n→+∞)  S_n =(1/(12))

letdecomposeF(x)=1(2x1)(2x+1)(2x+3)F(x)=a2x1+b2x+1+c2x+3a=(2x1)F(x)x=12=1(2)(4)=18b=(2x+1)F(x)x=12=1(2)(2)=14c=(2x+3)F(x)x=32=1(4)(2)=18F(x)=18(2x1)14(2x+1)+18(2x+3)letSn=k=1n1(2k1)(2k+1)(2k+3)Sn=ΣF(k)=18k=1n12k114k=1n12k+1+18k=1n12k+3wehavek=1n12k1=1+13+15+....+12n1=1+12+13+...+12n1+12n1214....12n=H2n12Hnk=1n12k+1=k=j1j=2n+112j1=j=1n+112j11=H2n+212Hn+11k=1n12k+3=k=j2j=3n+212j1=j=1n+212j1113=H2n+412Hn+2438Sn=H2n12Hn2(H2n+212Hn+11)+H2n+412Hn+243=H2n12Hn2H2n+2+Hn+1+2+H2n+412Hn+243ln(2n)+γ12ln(n)γ22ln(2n+2)2γ+ln(n+1)+γ+ln(2n+4)+γ12ln(n+2)γ2+238Snln(2)+ln(n)12ln(n)2ln(2)2ln(n)+ln(n)+ln(2)+ln(n)12ln(n)+238Sn23Sn112limn+Sn=112

Commented by Maclaurin Stickker last updated on 26/Apr/20

Thank you, I appreciate your work.

Thankyou,Iappreciateyourwork.

Commented by abdomathmax last updated on 27/Apr/20

you are welcome

youarewelcome

Answered by ajfour last updated on 26/Apr/20

S=(1/4)Σ(((2n+3)−(2n−1))/((2n−1)(2n+1)(2n+3)))   =(1/4)Σ(1/((2n−1)(2n+1)))−(1/4)Σ(1/((2n+1)(2n+3)))   =(1/8)Σ(1/(2n−1))−(1/8)Σ(1/(2n+1))−(1/8)Σ(1/(2n+1))+(1/8)Σ(1/(2n+3))  8S=((1/1)+(1/3)+(1/5)+(1/7)+...)−2((1/3)+(1/5)+(1/7)+...)+((1/5)+(1/7)+...)      =1−(1/3) =(2/3)  ⇒   S=(1/(12)) .  (any chance this may be correct?)

S=14Σ(2n+3)(2n1)(2n1)(2n+1)(2n+3)=14Σ1(2n1)(2n+1)14Σ1(2n+1)(2n+3)=18Σ12n118Σ12n+118Σ12n+1+18Σ12n+38S=(11+13+15+17+...)2(13+15+17+...)+(15+17+...)=113=23S=112.(anychancethismaybecorrect?)

Commented by mathmax by abdo last updated on 26/Apr/20

correct sir ajfour

correctsirajfour

Commented by Maclaurin Stickker last updated on 26/Apr/20

Perfect!

Perfect!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com