Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 90802 by john santu last updated on 26/Apr/20

1) ∫_(ln 2) ^∞  (1/(√(e^x −1))) dx   2) ∫_(ln 2) ^∞  (1/(e^x −1)) dx

1)ln21ex1dx2)ln21ex1dx

Commented by john santu last updated on 26/Apr/20

1) u = (√(e^x −1)) ⇒ dx = ((2u du)/e^x )  ∫ _1 ^∞  ((2u)/u) (1/e^x ) du = ∫_1 ^∞ 2 (du/(u^2 +1))  = tan^(−1) (u) ]_1 ^∞  = 2((π/2)−(π/4)) = (π/2)  2)∫_(ln 2) ^∞ (e^(−x) /((e^x −1)e^(−x) )) dx =   ∫_(ln 2) ^∞ (e^(−x) /(1−e^(−x) )) dx = ln (1−e^(−x) )]_(ln 2 ) ^∞   = 0 − ln ((1/2))  = ln 2

1)u=ex1dx=2uduex12uu1exdu=12duu2+1=tan1(u)]1=2(π2π4)=π22)ln2ex(ex1)exdx=Missing \left or extra \right=0ln(12)=ln2

Commented by mathmax by abdo last updated on 26/Apr/20

2)  ∫_(ln2) ^∞  (dx/(e^x −1)) =_(e^x =t)    ∫_2 ^∞  (dt/(t(t−1)))  =∫_2 ^∞ ((1/(t−1))−(1/t))dt =[ln∣((t−1)/t)∣]_2 ^(+∞)  =−ln((1/2))=ln(2)

2)ln2dxex1=ex=t2dtt(t1)=2(1t11t)dt=[lnt1t]2+=ln(12)=ln(2)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com