Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 90810 by john santu last updated on 26/Apr/20

(dy/dx) = ((2x^2 +y^2 )/(3x^2 +2xy))

dydx=2x2+y23x2+2xy

Commented by peter frank last updated on 26/Apr/20

help Qn  90812

helpQn90812

Commented by john santu last updated on 26/Apr/20

Q = (y/x) ⇒ (dQ/dx).x +Q = ((2+Q^2 )/(3+2Q))  x.(dQ/dx) = ((2+Q^2 −3Q−2Q^2 )/(3+2Q))  x.(dQ/dx) = ((−Q^2 −3Q+2)/(3+2Q))  (((3+2Q) dQ)/(−Q^2 −3Q+2)) = (dx/x)  ∫ ((d(Q^2 +3Q−2))/((Q^2 +3Q−2))) = −ln x + C  ln (Q^2 +3Q−2) + ln x = C  ln (x((y^2 /x^2 )+((3y)/x)−2)) = C  ln ((y^2 /x)+ 3y−2x) = C  ⇒ (y^2 /x)+3y−2x = e^C  = K

Q=yxdQdx.x+Q=2+Q23+2Qx.dQdx=2+Q23Q2Q23+2Qx.dQdx=Q23Q+23+2Q(3+2Q)dQQ23Q+2=dxxd(Q2+3Q2)(Q2+3Q2)=lnx+Cln(Q2+3Q2)+lnx=Cln(x(y2x2+3yx2))=Cln(y2x+3y2x)=Cy2x+3y2x=eC=K

Answered by Joel578 last updated on 26/Apr/20

(dy/dx) = ((2 + ((y/x))^2 )/(3 + 2((y/x))))  Let u = (y/x) ⇒ y = ux ⇒ (dy/dx) = x (du/dx) + u    x (du/dx) + u = ((2 + u^2 )/(3 + 2u))  ⇒ x (du/dx) = ((2 − 3u − u^2 )/(3 + 2u))  ⇒ − ((2u + 3)/(u^2  + 3u − 2)) du = (1/x) dx  ⇒ −ln (u^2  + 3u − 2) = ln x + C_1   ⇒ ln (u^2  + 3u − 2) = C_2  − ln x  ⇒ u^2  + 3u − 2 = (C_3 /x)  ⇒ ((y^2  + 3xy − 2x^2 )/x^2 ) = (C_3 /x)  ⇒ y^2  + 3xy − 2x^2  = C_3  x

dydx=2+(yx)23+2(yx)Letu=yxy=uxdydx=xdudx+uxdudx+u=2+u23+2uxdudx=23uu23+2u2u+3u2+3u2du=1xdxln(u2+3u2)=lnx+C1ln(u2+3u2)=C2lnxu2+3u2=C3xy2+3xy2x2x2=C3xy2+3xy2x2=C3x

Commented by peter frank last updated on 26/Apr/20

thanks

thanks

Terms of Service

Privacy Policy

Contact: info@tinkutara.com