Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 90819 by ajfour last updated on 26/Apr/20

Commented by ajfour last updated on 26/Apr/20

mass of rod is M, and α=0, but  rod rotates with constant angular  veloity ω_0  , then find relative   speed of small mass m with  respect to rod, as it reaches   the extreme end (a=l) from the  hinged end (a=0).

$${mass}\:{of}\:{rod}\:{is}\:{M},\:{and}\:\alpha=\mathrm{0},\:{but} \\ $$$${rod}\:{rotates}\:{with}\:{constant}\:{angular} \\ $$$${veloity}\:\omega_{\mathrm{0}} \:,\:{then}\:{find}\:{relative}\: \\ $$$${speed}\:{of}\:{small}\:{mass}\:{m}\:{with} \\ $$$${respect}\:{to}\:{rod},\:{as}\:{it}\:{reaches}\: \\ $$$${the}\:{extreme}\:{end}\:\left({a}={l}\right)\:{from}\:{the} \\ $$$${hinged}\:{end}\:\left({a}=\mathrm{0}\right). \\ $$

Commented by ajfour last updated on 26/Apr/20

this one from a renowned  physics book, have answer.

$${this}\:{one}\:{from}\:{a}\:{renowned} \\ $$$${physics}\:{book},\:{have}\:{answer}. \\ $$

Answered by ajfour last updated on 26/Apr/20

Answered by mr W last updated on 26/Apr/20

when sleeve is at position x:  angular speed of rod =ω  speed of sleeve along rod=u  acc. of sleeve along rod=a=u(du/dx)  Iω_0 =(I+mx^2 )ω  ⇒ω=(((Ml^2 )/3)/(((Ml^2 )/3)+mx^2 ))ω_0 =((Ml^2 )/(Ml^2 +3mx^2 ))ω_0   ma−mω^2 x=0  ⇒u(du/dx)−ω^2 x=0  ⇒u(du/dx)−(((Ml^2 ω_0 )/(Ml^2 +3mx^2 )))^2 x=0  ⇒∫_0 ^u_(max)  udu=∫_0 ^l (((Ml^2 ω_0 )/(Ml^2 +3mx^2 )))^2 xdx  ⇒(u_(mac) ^2 /2)=(((Ml^2 ω_0 )/(3m)))^2 ∫_0 ^l ((xdx)/((((Ml^2 )/(3m))+x^2 )^2 ))  ⇒u_(max) ^2 =(((Ml^2 ω_0 )/(3m)))^2 ∫_0 ^l ((d(((Ml^2 )/(3m))+x^2 ))/((((Ml^2 )/(3m))+x^2 )^2 ))  ⇒u_(max) ^2 =(((Ml^2 ω_0 )/(3m)))^2 [(1/(((Ml^2 )/(3m))+x^2 ))]_l ^0   ⇒u_(max) ^2 =(((Mlω_0 )/(3m)))^2 [(1/(M/(3m)))−(1/((M/(3m))+1))]  ⇒u_(max) ^2 =(((Mlω_0 )/(3m)))^2 [(1/((M/(3m))((M/(3m))+1)))]  ⇒u_(max) =lω_0 (√(M/(M+3m)))

$${when}\:{sleeve}\:{is}\:{at}\:{position}\:{x}: \\ $$$${angular}\:{speed}\:{of}\:{rod}\:=\omega \\ $$$${speed}\:{of}\:{sleeve}\:{along}\:{rod}={u} \\ $$$${acc}.\:{of}\:{sleeve}\:{along}\:{rod}={a}={u}\frac{{du}}{{dx}} \\ $$$${I}\omega_{\mathrm{0}} =\left({I}+{mx}^{\mathrm{2}} \right)\omega \\ $$$$\Rightarrow\omega=\frac{\frac{{Ml}^{\mathrm{2}} }{\mathrm{3}}}{\frac{{Ml}^{\mathrm{2}} }{\mathrm{3}}+{mx}^{\mathrm{2}} }\omega_{\mathrm{0}} =\frac{{Ml}^{\mathrm{2}} }{{Ml}^{\mathrm{2}} +\mathrm{3}{mx}^{\mathrm{2}} }\omega_{\mathrm{0}} \\ $$$${ma}−{m}\omega^{\mathrm{2}} {x}=\mathrm{0} \\ $$$$\Rightarrow{u}\frac{{du}}{{dx}}−\omega^{\mathrm{2}} {x}=\mathrm{0} \\ $$$$\Rightarrow{u}\frac{{du}}{{dx}}−\left(\frac{{Ml}^{\mathrm{2}} \omega_{\mathrm{0}} }{{Ml}^{\mathrm{2}} +\mathrm{3}{mx}^{\mathrm{2}} }\right)^{\mathrm{2}} {x}=\mathrm{0} \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{{u}_{{max}} } {udu}=\int_{\mathrm{0}} ^{{l}} \left(\frac{{Ml}^{\mathrm{2}} \omega_{\mathrm{0}} }{{Ml}^{\mathrm{2}} +\mathrm{3}{mx}^{\mathrm{2}} }\right)^{\mathrm{2}} {xdx} \\ $$$$\Rightarrow\frac{{u}_{{mac}} ^{\mathrm{2}} }{\mathrm{2}}=\left(\frac{{Ml}^{\mathrm{2}} \omega_{\mathrm{0}} }{\mathrm{3}{m}}\right)^{\mathrm{2}} \int_{\mathrm{0}} ^{{l}} \frac{{xdx}}{\left(\frac{{Ml}^{\mathrm{2}} }{\mathrm{3}{m}}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$$\Rightarrow{u}_{{max}} ^{\mathrm{2}} =\left(\frac{{Ml}^{\mathrm{2}} \omega_{\mathrm{0}} }{\mathrm{3}{m}}\right)^{\mathrm{2}} \int_{\mathrm{0}} ^{{l}} \frac{{d}\left(\frac{{Ml}^{\mathrm{2}} }{\mathrm{3}{m}}+{x}^{\mathrm{2}} \right)}{\left(\frac{{Ml}^{\mathrm{2}} }{\mathrm{3}{m}}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$$\Rightarrow{u}_{{max}} ^{\mathrm{2}} =\left(\frac{{Ml}^{\mathrm{2}} \omega_{\mathrm{0}} }{\mathrm{3}{m}}\right)^{\mathrm{2}} \left[\frac{\mathrm{1}}{\frac{{Ml}^{\mathrm{2}} }{\mathrm{3}{m}}+{x}^{\mathrm{2}} }\right]_{{l}} ^{\mathrm{0}} \\ $$$$\Rightarrow{u}_{{max}} ^{\mathrm{2}} =\left(\frac{{Ml}\omega_{\mathrm{0}} }{\mathrm{3}{m}}\right)^{\mathrm{2}} \left[\frac{\mathrm{1}}{\frac{{M}}{\mathrm{3}{m}}}−\frac{\mathrm{1}}{\frac{{M}}{\mathrm{3}{m}}+\mathrm{1}}\right] \\ $$$$\Rightarrow{u}_{{max}} ^{\mathrm{2}} =\left(\frac{{Ml}\omega_{\mathrm{0}} }{\mathrm{3}{m}}\right)^{\mathrm{2}} \left[\frac{\mathrm{1}}{\frac{{M}}{\mathrm{3}{m}}\left(\frac{{M}}{\mathrm{3}{m}}+\mathrm{1}\right)}\right] \\ $$$$\Rightarrow{u}_{{max}} ={l}\omega_{\mathrm{0}} \sqrt{\frac{{M}}{{M}+\mathrm{3}{m}}} \\ $$

Commented by ajfour last updated on 26/Apr/20

Excellent Sir! Very basic way.    thanks Sir!

$${Excellent}\:{Sir}!\:{Very}\:{basic}\:{way}. \\ $$$$\:\:{thanks}\:{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com