Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 90842 by jagoll last updated on 26/Apr/20

x^2 −(y−z)^2  = 3  y^2  − (z−x)^2  = 5  z^2  − (x−y)^2  = 12

x2(yz)2=3y2(zx)2=5z2(xy)2=12

Commented by john santu last updated on 26/Apr/20

(1) (x+y−z)(x−y+z)=3  (2) (y+z−x)(y−z+x) = 5  (3) (z+x−y)(z−x+y) = 12  x^2 +y^2 +z^2  −{y^2 −2yz+z^2 +z^2 −2xz+x^2   +x^2 −2xy+y^2 } = 20  −(x^2 +y^2 +z^2 )+2xy+2yz+2xz = 20  (x^2 +y^2 +z^2 )−2(xy+xz+yz) = −20  (x+y+z)^2 −4(xy+xz+yz) = −20

(1)(x+yz)(xy+z)=3(2)(y+zx)(yz+x)=5(3)(z+xy)(zx+y)=12x2+y2+z2{y22yz+z2+z22xz+x2+x22xy+y2}=20(x2+y2+z2)+2xy+2yz+2xz=20(x2+y2+z2)2(xy+xz+yz)=20(x+y+z)24(xy+xz+yz)=20

Commented by jagoll last updated on 26/Apr/20

by observe i got   x = 2 , y = 3 , z = 4   (1) 4−(3−4)^2  = 3   (2) 9−(4−2)^2  = 5   (3) 16−(2−3)^2  ≠ 12  i think it wrong

byobserveigotx=2,y=3,z=4(1)4(34)2=3(2)9(42)2=5(3)16(23)212ithinkitwrong

Commented by Prithwish Sen 1 last updated on 26/Apr/20

after mr. john santu i think  (((1))/((2)))  we get ⇒ ((x−y+z)/(y+z−x))  = (3/5) ....(4)  (((2))/((3))) ⇒ ((x+y−z)/(x−y+z)) = (5/(12)) ......(5)  (((1))/((3))) ⇒ ((x+y−z)/(y−x+z)) = (1/4)....(6)  now by (4)×(3)⇒(x−y+z)^2  = ((36)/5)           ⇒ x−y+z = ±(6/(√5)) ....(7)  and by (5)×(1) ⇒ (x+y−z)^2  = (5/4)            ⇒ x+y−z = ± ((√5)/2).......(8)  considering only the positive value  by (7) + (8)             2x = (6/(√5)) +((√5)/2)  ⇒ x=((17)/(2(√5)))  and so on.

aftermr.johnsantuithink(1)(2)wegetxy+zy+zx=35....(4)(2)(3)x+yzxy+z=512......(5)(1)(3)x+yzyx+z=14....(6)nowby(4)×(3)(xy+z)2=365xy+z=±65....(7)andby(5)×(1)(x+yz)2=54x+yz=±52.......(8)consideringonlythepositivevalueby(7)+(8)2x=65+52x=1725andsoon.

Commented by jagoll last updated on 28/Apr/20

waw..great sir. thank you

waw..greatsir.thankyou

Answered by ajfour last updated on 26/Apr/20

x^2 −y^2 −z^2 =3−2yz   ..(i)  y^2 −z^2 −x^2 =5−2xz     ...(ii)  z^2 −x^2 −y^2 =12−2xy     ....(iii)  Adding  all  (x^2 +y^2 +z^2 )−2(xy+yz+zx)=−20  ⇒ (x+y)^2 −2z(x+y)−4xy+z^2 =−20                                               .....(I)  (i)+(ii)  2z(x+y)−2z^2 =8     ⇒  x+y=z+(4/z)  from (III)   ⇒  (x−y)^2 =z^2 −12  (i)−(ii)  (x^2 −y^2 )−z(x−y)=−1  ⇒ (x−y)(x+y−z)=−1  (x−y)^2 {(x+y)^2 +z^2 −2z(x+y)}=1  (z^2 −12){(z+(4/z))^2 +z^2 −2z(z+(4/z))}=1  (z^2 −12)(((16)/z^2 ))=1  16z^2 −192=z^2   ⇒   z^2 =((192)/(15))=((64)/5)  (x+y)^2 =((64)/5)+((16×5)/(64))+8                 = ((64)/5)+(5/4)+8 = ((441)/(20))  (x−y)^2 =z^2 −12 =((64)/5)−12=(4/5)  let x>y  ⇒   x−y=(4/(√(20)))  ,  x+y=((21)/(√(20)))  ⇒x=((25)/(4(√5))) ,  y=((17)/(4(√5))) ,  z=((32)/(4(√5))) .  these dont fit very well, so let        x<y  ⇒  y−x=(4/(√(20)))  ⇒  x=((17)/(4(√5))) ,  y=((25)/(4(√5))) ,  z=((32)/(4(√5)))

x2y2z2=32yz..(i)y2z2x2=52xz...(ii)z2x2y2=122xy....(iii)Addingall(x2+y2+z2)2(xy+yz+zx)=20(x+y)22z(x+y)4xy+z2=20.....(I)(i)+(ii)2z(x+y)2z2=8x+y=z+4zfrom(III)(xy)2=z212(i)(ii)(x2y2)z(xy)=1(xy)(x+yz)=1(xy)2{(x+y)2+z22z(x+y)}=1(z212){(z+4z)2+z22z(z+4z)}=1(z212)(16z2)=116z2192=z2z2=19215=645(x+y)2=645+16×564+8=645+54+8=44120(xy)2=z212=64512=45letx>yxy=420,x+y=2120x=2545,y=1745,z=3245.thesedontfitverywell,soletx<yyx=420x=1745,y=2545,z=3245

Commented by ajfour last updated on 26/Apr/20

i checked them even, hurray!

icheckedthemeven,hurray!

Commented by jagoll last updated on 26/Apr/20

hHaha hurray sir

hHahahurraysir

Answered by mr W last updated on 26/Apr/20

(x+y−z)(x−y+z)=3  (x+y+z−2z)(x+y+z−2y)=3   ...(i)  (y+z−x)(y−z+x)=5  (x+y+z−2x)(x+y+z−2z)=5   ...(ii)  (z+x−y)(z−x+y)=12  (x+y+z−2y)(x+y+z−2x)=12   ...(iii)    (i)×(ii)×(iii):  (x+y+z−2x)^2 (x+y+z−2y)^2 (x+y+z−2z)^2 =3×5×12=180  (x+y+z−2x)(x+y+z−2y)(x+y+z−2z)=±6(√5)   ...(iv)    (iv)/(i) and similarly:  x+y+z−2x=±((6(√5))/3)   ... I  x+y+z−2y=±((6(√5))/5)   ...II  x+y+z−2z=±((6(√5))/(12))   ...III  I+II+III:  x+y+z=±6(√5)((1/3)+(1/5)+(1/(12)))   ...IV    IV−I and similarly:  2x=±6(√5)((1/5)+(1/(12))) ⇒x=±((17(√5))/(20))  2y=±6(√5)((1/3)+(1/(12))) ⇒y=±((5(√5))/4)  2z=±6(√5)((1/3)+(1/5)) ⇒z=±((8(√5))/5)

(x+yz)(xy+z)=3(x+y+z2z)(x+y+z2y)=3...(i)(y+zx)(yz+x)=5(x+y+z2x)(x+y+z2z)=5...(ii)(z+xy)(zx+y)=12(x+y+z2y)(x+y+z2x)=12...(iii)(i)×(ii)×(iii):(x+y+z2x)2(x+y+z2y)2(x+y+z2z)2=3×5×12=180(x+y+z2x)(x+y+z2y)(x+y+z2z)=±65...(iv)(iv)/(i)andsimilarly:x+y+z2x=±653...Ix+y+z2y=±655...IIx+y+z2z=±6512...IIII+II+III:x+y+z=±65(13+15+112)...IVIVIandsimilarly:2x=±65(15+112)x=±175202y=±65(13+112)y=±5542z=±65(13+15)z=±855

Commented by mr W last updated on 26/Apr/20

yes! it means all + or all −.  we see if x=a,y=b,z=c is a solution, then  x=−a,y=−b,z=−c is also a solution,

yes!itmeansall+orall.weseeifx=a,y=b,z=cisasolution,thenx=a,y=b,z=cisalsoasolution,

Commented by ajfour last updated on 26/Apr/20

all ± may not be valid, Sir, i think..

all±maynotbevalid,Sir,ithink..

Commented by mr W last updated on 26/Apr/20

to be exact, the solutions are:  x=((17(√5))/(20))  y=((5(√5))/4)  z=((8(√5))/5)  or  x=−((17(√5))/(20))  y=−((5(√5))/4)  z=−((8(√5))/5)

tobeexact,thesolutionsare:x=17520y=554z=855orx=17520y=554z=855

Commented by ajfour last updated on 26/Apr/20

Thanks for clarifying Sir!

ThanksforclarifyingSir!

Commented by jagoll last updated on 26/Apr/20

great....

great....

Commented by I want to learn more last updated on 27/Apr/20

Nice.

Nice.

Answered by MWSuSon last updated on 26/Apr/20

(x+y−z)(x−y+z)=3…(1)  (y−z+x)(y+z−x)=5…(2)  (z−x+y)(z+x−y)=12…(3)  ((eqn(1))/(eqn(2)))   (((x−y+z))/((y+z−x)))=(3/5)…(4)  ((eqn(3))/(eqn(2)))   (((z+x−y))/((y−z+x)))=((12)/5)…(5)  ((eqn(1))/(eqn(3)))   (((x+y−z))/((z−x+y)))=(3/(12))…(6)  from eqn(4) 3y+3z−3x=5x−5y+5z  8y−2z−8x=0  [x−y=((−z)/4)]  from eqn(5) 5z+5x−5y=12y−12z+12x  17z−7x−17y=0  [y−z=((−7x)/(17))]  from eqn(6) 3z−3x+3y=12x+12y−12z  [z−x=((9y)/(15))]  input the value of (x−y) into eqn(3)  input the value of (y−z) into eqn(1)  input the value of (z−x) into eqn(2)  and you′ll have the answer Mr W had.

(x+yz)(xy+z)=3(1)(yz+x)(y+zx)=5(2)(zx+y)(z+xy)=12(3)eqn(1)eqn(2)(xy+z)(y+zx)=35(4)eqn(3)eqn(2)(z+xy)(yz+x)=125(5)eqn(1)eqn(3)(x+yz)(zx+y)=312(6)fromeqn(4)3y+3z3x=5x5y+5z8y2z8x=0[xy=z4]fromeqn(5)5z+5x5y=12y12z+12x17z7x17y=0[yz=7x17]fromeqn(6)3z3x+3y=12x+12y12z[zx=9y15]inputthevalueof(xy)intoeqn(3)inputthevalueof(yz)intoeqn(1)inputthevalueof(zx)intoeqn(2)andyoullhavetheanswerMrWhad.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com