Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 90863 by ajfour last updated on 26/Apr/20

(dy/dx)−a((y/x))=1+(1/x)

dydxa(yx)=1+1x

Answered by mr W last updated on 26/Apr/20

p(x)=−(a/x)  ∫p(x)dx=−∫(a/x)dx=−aln x=ln x^(−a)   u(x)=e^(∫p(x)dx) =x^(−a)   q(x)=1+(1/x)  ∫u(x)q(x)dx=∫x^(−a) (1+(1/x))dx=−(1/(a−1))x^(−a+1) −(1/a)x^(−a)   y=((∫u(x)q(x)dx+C)/(u(x)))=((−(1/(a−1))x^(−a+1) −(1/a)x^(−a) +C)/x^(−a) )  ⇒y=Cx^a −(x/(a−1))−(1/a)

p(x)=axp(x)dx=axdx=alnx=lnxau(x)=ep(x)dx=xaq(x)=1+1xu(x)q(x)dx=xa(1+1x)dx=1a1xa+11axay=u(x)q(x)dx+Cu(x)=1a1xa+11axa+Cxay=Cxaxa11a

Commented by jagoll last updated on 26/Apr/20

exact diff eq ?

exactdiffeq?

Commented by mr W last updated on 26/Apr/20

Commented by jagoll last updated on 26/Apr/20

o yes. not exact

oyes.notexact

Commented by jagoll last updated on 26/Apr/20

Commented by ajfour last updated on 26/Apr/20

Absolutely perfect Sir!

Answered by mathmax by abdo last updated on 23/Jun/20

y^′ −(a/x)y =((x+1)/x) ⇒xy^′ −ay =x+1 (e)  (he)→xy^′ −ay =0 ⇒xy^′  =ay ⇒(y^′ /y) =(a/x) ⇒ln∣y∣ =aln∣x∣ +c ⇒  y =k ∣x∣^a      solution on ]0,+∞[  ⇒y =k x^a   mvc method →y^′  =k^′  x^a  +ak x^(a−1)   e⇒k^′  x^(a+1) +ak x^a −ka x^a  =x+1 ⇒k^′  =((x+1)/x^(a+1) ) =(1/x^a ) +(1/x^(a+1) ) =x^(−a)  +x^(−(a+1))  ⇒  k(x) =∫(x^(−a) +x^(−(a+1)) )dx =(1/(1−a))x^(1−a)  −(1/a)x^(−a)   +c ⇒  y(x) =((1/(1−a))x^(1−a)  −(1/a)x^(−a) )x^a  =(x/(1−a))−(1/a)      with a≠1 and a≠0

yaxy=x+1xxyay=x+1(e)(he)xyay=0xy=ayyy=axlny=alnx+cy=kxasolutionon]0,+[y=kxamvcmethody=kxa+akxa1ekxa+1+akxakaxa=x+1k=x+1xa+1=1xa+1xa+1=xa+x(a+1)k(x)=(xa+x(a+1))dx=11ax1a1axa+cy(x)=(11ax1a1axa)xa=x1a1awitha1anda0

Commented by mathmax by abdo last updated on 23/Jun/20

sorry y(x) =((1/(1−a))x^(1−a) −(1/a)x^(−a)  +c)x^a  =(x/(1−a))−(1/a) +c x^a

sorryy(x)=(11ax1a1axa+c)xa=x1a1a+cxa

Terms of Service

Privacy Policy

Contact: info@tinkutara.com