Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 90876 by john santu last updated on 26/Apr/20

((2cos ((π/9))))^(1/(3  )) −((2cos (((2π)/9))))^(1/(3  )) −((2cos (((4π)/9))))^(1/(3  ))  = ?

2cos(π9)32cos(2π9)32cos(4π9)3=?

Commented by john santu last updated on 26/Apr/20

Ramanujan theorem  let α, β ,γ be a roots   x^3 −ax^2 +bx−1=0  then ((α ))^(1/(3 ))  + (β)^(1/(3 ))  + (γ)^(1/(3 ))  = ((a+6+3t))^(1/(3 ))   with t^3 −3(a+b+3)t−(ab+6(a+b)+9)=0  ⇒ (α)^(1/(3 )) +(β)^(1/(3 ))  +(γ)^(1/(3 ))  = ((a+6+3t))^(1/(3 ))  = ϕ  ((αβ))^(1/(3 ))  + ((βγ))^(1/(3  ))  + ((αγ))^(1/(3  ))  = ((b+6+3t))^(1/(3 ))  = θ  (t+3)^3  = (ϕθ)^3   consider x^3 −3x−1=0  x = t+(1/t) ⇒t^9  +1 = 0  t^9  = −1 = e^(iπ+2πki)  = e^(iπ(1+2k))  ,k∈Z  t = e^(iπ(((1+2k)/9)))  , k = 0,1,2,...,8  t = e^((iπ)/9)  , e^((i5π)/9) , e^((i7π)/9)   t = e^(iθ)  = cos θ+isin θ  x^3 −3x−1 = 0 roots   α = 2cos ((π/9))  β= −2cos (((2π)/9))  γ = −2cos (((4π)/9))  ∴ ((2cos ((π/9))))^(1/(3 )) −((2cos (((2π)/9))))^(1/(3 ))    −((2cos (((4π)/9))))^(1/(3  ))  = ((6−3(9)^(1/(3  )) ))^(1/(3  ))

Ramanujantheoremletα,β,γbearootsx3ax2+bx1=0thenα3+β3+γ3=a+6+3t3witht33(a+b+3)t(ab+6(a+b)+9)=0α3+β3+γ3=a+6+3t3=φαβ3+βγ3+αγ3=b+6+3t3=θ(t+3)3=(φθ)3considerx33x1=0x=t+1tt9+1=0t9=1=eiπ+2πki=eiπ(1+2k),kZt=eiπ(1+2k9),k=0,1,2,...,8t=eiπ9,ei5π9,ei7π9t=eiθ=cosθ+isinθx33x1=0rootsα=2cos(π9)β=2cos(2π9)γ=2cos(4π9)2cos(π9)32cos(2π9)32cos(4π9)3=63933

Commented by jagoll last updated on 26/Apr/20

Terms of Service

Privacy Policy

Contact: info@tinkutara.com