Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 91024 by john santu last updated on 27/Apr/20

x^2 y′′+3xy′ +2y = 4x^2

$${x}^{\mathrm{2}} {y}''+\mathrm{3}{xy}'\:+\mathrm{2}{y}\:=\:\mathrm{4}{x}^{\mathrm{2}} \\ $$

Commented by jagoll last updated on 27/Apr/20

i can try  let x = e^z   auxillary equation   r^2 +2r+2 = 0   r = −1± i   y_c  =e^(−z) { C_1 cos (z)+C_2 sin (z)}  (D^2 +2D+2)y = 4e^(2z)   particular solution  y_p  = 4 ((1/(D^2 +2D+2)))e^(2z)   y_p  = (4/(10))e^(2z)  = (2/5)x^2   complete solution  y = e^(−z) {C_1 cos (z)+C_2 sin (z)}+ (2/5)x^2   y = (1/x){C_1 cos (ln x) +C_2 sin (ln x)}+((2x^2 )/5)

$${i}\:{can}\:{try} \\ $$$${let}\:{x}\:=\:{e}^{{z}} \\ $$$${auxillary}\:{equation}\: \\ $$$${r}^{\mathrm{2}} +\mathrm{2}{r}+\mathrm{2}\:=\:\mathrm{0}\: \\ $$$${r}\:=\:−\mathrm{1}\pm\:{i}\: \\ $$$${y}_{{c}} \:={e}^{−{z}} \left\{\:{C}_{\mathrm{1}} \mathrm{cos}\:\left({z}\right)+{C}_{\mathrm{2}} \mathrm{sin}\:\left({z}\right)\right\} \\ $$$$\left({D}^{\mathrm{2}} +\mathrm{2}{D}+\mathrm{2}\right){y}\:=\:\mathrm{4}{e}^{\mathrm{2}{z}} \\ $$$${particular}\:{solution} \\ $$$${y}_{{p}} \:=\:\mathrm{4}\:\left(\frac{\mathrm{1}}{{D}^{\mathrm{2}} +\mathrm{2}{D}+\mathrm{2}}\right){e}^{\mathrm{2}{z}} \\ $$$${y}_{{p}} \:=\:\frac{\mathrm{4}}{\mathrm{10}}{e}^{\mathrm{2}{z}} \:=\:\frac{\mathrm{2}}{\mathrm{5}}{x}^{\mathrm{2}} \\ $$$${complete}\:{solution} \\ $$$${y}\:=\:{e}^{−{z}} \left\{{C}_{\mathrm{1}} \mathrm{cos}\:\left({z}\right)+{C}_{\mathrm{2}} \mathrm{sin}\:\left({z}\right)\right\}+\:\frac{\mathrm{2}}{\mathrm{5}}{x}^{\mathrm{2}} \\ $$$${y}\:=\:\frac{\mathrm{1}}{{x}}\left\{{C}_{\mathrm{1}} \mathrm{cos}\:\left(\mathrm{ln}\:{x}\right)\:+{C}_{\mathrm{2}} \mathrm{sin}\:\left(\mathrm{ln}\:{x}\right)\right\}+\frac{\mathrm{2}{x}^{\mathrm{2}} }{\mathrm{5}} \\ $$

Commented by niroj last updated on 27/Apr/20

   x^2 y^(′′) +3xy^′ +2y=4x^2         x^2 (d^2 y/dx^2 )+3x(dy/dx)+2y=4x^2     Put ,x^2 (d^2 y/dx^2 )= (D^2 −D)y  , x(dy/dx)=Dy     and x=e^(z ) or z=log x     (D^2 −D+3D+2)y= 4 e^(2z)      (D^2 +2D+2)y=4e^(2z)     Auxiliary Equation ,     m^2 +2m+2=0  m = ((−2+^− (√(4−8)))/2)= ((−2+^− (√(−4)))/2)     = ((−2+^− (√(−4)))/2)= ((−2+^− (√(4i)))/2)=((−2+^− 2i)/2)    m=−1+^− 1i    CF= e^(−z) (C_1 cos z+C_2 sinz)     Now again,    PI = ((4e^(2z) )/(D^2 +2D+2))= ((4e^(2z) )/(4+4+2))= ((4e^(2z) )/(10))    PI= ((2e^(2z) )/5)   Complete  Solution ,      y= CF+PI      = e^(−z) (C_1 cos z+C_2 sinz)+ ((2e^(2z) )/5)    put z=log x     y= e^(−log x) (C_1 cos log x+C_2 sin log x)+((2e^(log x^2 ) )/5)    y= (1/x)(C_1 cos log x+C_2 sin log x)+(2/5)x^2  //.

$$\:\:\:\mathrm{x}^{\mathrm{2}} \mathrm{y}^{''} +\mathrm{3xy}^{'} +\mathrm{2y}=\mathrm{4x}^{\mathrm{2}} \: \\ $$$$\:\:\:\:\:\mathrm{x}^{\mathrm{2}} \frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }+\mathrm{3x}\frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{2y}=\mathrm{4x}^{\mathrm{2}} \\ $$$$\:\:\mathrm{Put}\:,\mathrm{x}^{\mathrm{2}} \frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }=\:\left(\mathrm{D}^{\mathrm{2}} −\mathrm{D}\right)\mathrm{y}\:\:,\:\mathrm{x}\frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{Dy} \\ $$$$\:\:\:\mathrm{and}\:\mathrm{x}=\mathrm{e}^{\mathrm{z}\:} \mathrm{or}\:\mathrm{z}=\mathrm{log}\:\mathrm{x} \\ $$$$\:\:\:\left(\mathrm{D}^{\mathrm{2}} −\mathrm{D}+\mathrm{3D}+\mathrm{2}\right)\mathrm{y}=\:\mathrm{4}\:\mathrm{e}^{\mathrm{2z}} \\ $$$$\:\:\:\left(\mathrm{D}^{\mathrm{2}} +\mathrm{2D}+\mathrm{2}\right)\mathrm{y}=\mathrm{4e}^{\mathrm{2z}} \\ $$$$\:\:\mathrm{Auxiliary}\:\mathrm{Equation}\:, \\ $$$$\:\:\:\mathrm{m}^{\mathrm{2}} +\mathrm{2m}+\mathrm{2}=\mathrm{0} \\ $$$$\mathrm{m}\:=\:\frac{−\mathrm{2}\overset{−} {+}\sqrt{\mathrm{4}−\mathrm{8}}}{\mathrm{2}}=\:\frac{−\mathrm{2}\overset{−} {+}\sqrt{−\mathrm{4}}}{\mathrm{2}} \\ $$$$\:\:\:=\:\frac{−\mathrm{2}\overset{−} {+}\sqrt{−\mathrm{4}}}{\mathrm{2}}=\:\frac{−\mathrm{2}\overset{−} {+}\sqrt{\mathrm{4i}}}{\mathrm{2}}=\frac{−\mathrm{2}\overset{−} {+}\mathrm{2i}}{\mathrm{2}} \\ $$$$\:\:\mathrm{m}=−\mathrm{1}\overset{−} {+}\mathrm{1i} \\ $$$$\:\:\mathrm{CF}=\:\mathrm{e}^{−\mathrm{z}} \left(\mathrm{C}_{\mathrm{1}} \mathrm{cos}\:\mathrm{z}+\mathrm{C}_{\mathrm{2}} \mathrm{sinz}\right) \\ $$$$\:\:\:\mathrm{Now}\:\mathrm{again}, \\ $$$$\:\:\mathrm{PI}\:=\:\frac{\mathrm{4e}^{\mathrm{2z}} }{\mathrm{D}^{\mathrm{2}} +\mathrm{2D}+\mathrm{2}}=\:\frac{\mathrm{4e}^{\mathrm{2z}} }{\mathrm{4}+\mathrm{4}+\mathrm{2}}=\:\frac{\mathrm{4e}^{\mathrm{2z}} }{\mathrm{10}} \\ $$$$\:\:\mathrm{PI}=\:\frac{\mathrm{2e}^{\mathrm{2z}} }{\mathrm{5}} \\ $$$$\:\mathrm{Complete}\:\:\mathrm{Solution}\:,\:\: \\ $$$$\:\:\mathrm{y}=\:\mathrm{CF}+\mathrm{PI} \\ $$$$\:\:\:\:=\:\mathrm{e}^{−\mathrm{z}} \left(\mathrm{C}_{\mathrm{1}} \mathrm{cos}\:\mathrm{z}+\mathrm{C}_{\mathrm{2}} \mathrm{sinz}\right)+\:\frac{\mathrm{2e}^{\mathrm{2z}} }{\mathrm{5}} \\ $$$$\:\:\mathrm{put}\:\mathrm{z}=\mathrm{log}\:\mathrm{x} \\ $$$$\:\:\:\mathrm{y}=\:\mathrm{e}^{−\mathrm{log}\:\mathrm{x}} \left(\mathrm{C}_{\mathrm{1}} \mathrm{cos}\:\mathrm{log}\:\mathrm{x}+\mathrm{C}_{\mathrm{2}} \mathrm{sin}\:\mathrm{log}\:\mathrm{x}\right)+\frac{\mathrm{2e}^{\mathrm{log}\:\mathrm{x}^{\mathrm{2}} } }{\mathrm{5}} \\ $$$$\:\:\mathrm{y}=\:\frac{\mathrm{1}}{\mathrm{x}}\left(\mathrm{C}_{\mathrm{1}} \mathrm{cos}\:\mathrm{log}\:\mathrm{x}+\mathrm{C}_{\mathrm{2}} \mathrm{sin}\:\mathrm{log}\:\mathrm{x}\right)+\frac{\mathrm{2}}{\mathrm{5}}\mathrm{x}^{\mathrm{2}} \://. \\ $$$$\: \\ $$

Commented by jagoll last updated on 27/Apr/20

why PI = ((4e^(2z) )/(14)) = ((2e^z )/7) how?

$${why}\:{PI}\:=\:\frac{\mathrm{4}{e}^{\mathrm{2}{z}} }{\mathrm{14}}\:=\:\frac{\mathrm{2}{e}^{{z}} }{\mathrm{7}}\:{how}? \\ $$

Commented by MWSuSon last updated on 27/Apr/20

check your   i think its a mistake

$${check}\:{your}\: \\ $$$${i}\:{think}\:{its}\:{a}\:{mistake} \\ $$

Commented by niroj last updated on 27/Apr/20

 yess dear its now edited .

$$\:{yess}\:{dear}\:{its}\:{now}\:{edited}\:. \\ $$

Answered by MWSuSon last updated on 27/Apr/20

let x=e^z    x^2 y′′=D(D−1)y  xy′=Dy  D(D−1)y+3Dy+2y=4e^(2z)   (D^2 +2D+2)y=4e^(2z)   Auxillary eqution   m^2 +2m+2=0  m=−1±i  y_c =e^(−z) (C_1 cos (z)+C_2 sin (z))  y_p =4(1/(D^2 +2D+2))e^(2z)   =4(1/(4+4+2))e^(2z)   =((4e^(2z) )/(10))  =((2e^(2z) )/5)  y=e^(−z) (C_1 cos (z)+C_2 sin (z))+(2/5)e^(2z)   but z=log_e x  y=(1/x)[C_1 cos (log_e x)+C_2 sin (log_e x)]+(2/5)x^2

$${let}\:{x}={e}^{{z}} \: \\ $$$${x}^{\mathrm{2}} {y}''={D}\left({D}−\mathrm{1}\right){y} \\ $$$${xy}'={Dy} \\ $$$${D}\left({D}−\mathrm{1}\right){y}+\mathrm{3}{Dy}+\mathrm{2}{y}=\mathrm{4}{e}^{\mathrm{2}{z}} \\ $$$$\left({D}^{\mathrm{2}} +\mathrm{2}{D}+\mathrm{2}\right){y}=\mathrm{4}{e}^{\mathrm{2}{z}} \\ $$$${Auxillary}\:{eqution}\: \\ $$$${m}^{\mathrm{2}} +\mathrm{2}{m}+\mathrm{2}=\mathrm{0} \\ $$$${m}=−\mathrm{1}\pm{i} \\ $$$${y}_{{c}} ={e}^{−{z}} \left({C}_{\mathrm{1}} \mathrm{cos}\:\left({z}\right)+{C}_{\mathrm{2}} \mathrm{sin}\:\left({z}\right)\right) \\ $$$${y}_{{p}} =\mathrm{4}\frac{\mathrm{1}}{{D}^{\mathrm{2}} +\mathrm{2}{D}+\mathrm{2}}{e}^{\mathrm{2}{z}} \\ $$$$=\mathrm{4}\frac{\mathrm{1}}{\mathrm{4}+\mathrm{4}+\mathrm{2}}{e}^{\mathrm{2}{z}} \\ $$$$=\frac{\mathrm{4}{e}^{\mathrm{2}{z}} }{\mathrm{10}} \\ $$$$=\frac{\mathrm{2}{e}^{\mathrm{2}{z}} }{\mathrm{5}} \\ $$$${y}={e}^{−{z}} \left({C}_{\mathrm{1}} \mathrm{cos}\:\left({z}\right)+{C}_{\mathrm{2}} \mathrm{sin}\:\left({z}\right)\right)+\frac{\mathrm{2}}{\mathrm{5}}{e}^{\mathrm{2}{z}} \\ $$$${but}\:{z}={log}_{{e}} {x} \\ $$$${y}=\frac{\mathrm{1}}{{x}}\left[{C}_{\mathrm{1}} \mathrm{cos}\:\left({log}_{{e}} {x}\right)+{C}_{\mathrm{2}} \mathrm{sin}\:\left({log}_{{e}} {x}\right)\right]+\frac{\mathrm{2}}{\mathrm{5}}{x}^{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com