Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 91147 by john santu last updated on 28/Apr/20

(D^2 +1)^2 y = x^2 cos x

$$\left({D}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} {y}\:=\:{x}^{\mathrm{2}} \mathrm{cos}\:{x}\: \\ $$

Commented by MWSuSon last updated on 28/Apr/20

I've corrected the mistake.

Answered by MWSuSon last updated on 28/Apr/20

Auxillary equation  (m^2 +1)(m^2 +1)=0  m_1 =±i  m_2 =±i  y_c =(C_1 +xC_2 )cos (x)+(C_3 +xC_4 )sin (x)  y_p =(1/((D^2 +1)^2 ))x^2 cosx  let cosx=Re{e^(ix) }=Re{cosx+isinx}  y_p =e^(ix) (1/([(D+i)^2 +1]^2 ))x^2   =e^(ix) (1/([(D^2 +i2D−1)+1]^2 ))x^2   =e^(ix) (1/((D^2 +i2D)^2 ))x^2   =e^(ix) (1/(D^4 +i4D^3 −4D^2 ))x^2   =e^(ix) (1/(D^2  ))((1/(D^2 +i4D−4))x^2 )  =e^(ix) (1/D^2 )(D^2 +i4D−4)^(−1) x^2   =e^(ix) (1/D^2 )[−(1/4)(1+(−((D^2 +i4D)/4)))^(−1) x^2 ]  skipping the expansion part  =e^(ix) (1/D^2 )[−(x^2 /4)−(1/8)−((ix)/2)+(1/2)]  =e^(ix) [(x^2 /4)−(x^4 /(48))−((ix^3 )/(12))−(x^2 /(16))]  =e^(ix) [((3x^2 )/(16))−(x^4 /(48))−((ix^3 )/(12))]  =(cosx+isinx)[((3x^2 )/(16))−(x^4 /(48))−((ix^3 )/(12))]  taking only the real part of the expansion  y_p =((3x^2 cosx)/(16))−((x^4 cosx)/(48))+((x^3 sinx)/(12))  y=(C_1 +xC_2 )cos (x)+(C_3 +xC_4 )sin (x)+((3x^2 cosx)/(16))−((x^4 cosx)/(48))+((x^3 sinx)/(12))  it got really messy doing this i might have  made mistakes with the signs.

$${Auxillary}\:{equation} \\ $$$$\left({m}^{\mathrm{2}} +\mathrm{1}\right)\left({m}^{\mathrm{2}} +\mathrm{1}\right)=\mathrm{0} \\ $$$${m}_{\mathrm{1}} =\pm{i} \\ $$$${m}_{\mathrm{2}} =\pm{i} \\ $$$${y}_{{c}} =\left({C}_{\mathrm{1}} +{xC}_{\mathrm{2}} \right)\mathrm{cos}\:\left({x}\right)+\left({C}_{\mathrm{3}} +{xC}_{\mathrm{4}} \right)\mathrm{sin}\:\left({x}\right) \\ $$$${y}_{{p}} =\frac{\mathrm{1}}{\left({D}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{x}^{\mathrm{2}} {cosx} \\ $$$${let}\:{cosx}={Re}\left\{{e}^{{ix}} \right\}={Re}\left\{{cosx}+{isinx}\right\} \\ $$$${y}_{{p}} ={e}^{{ix}} \frac{\mathrm{1}}{\left[\left({D}+{i}\right)^{\mathrm{2}} +\mathrm{1}\right]^{\mathrm{2}} }{x}^{\mathrm{2}} \\ $$$$={e}^{{ix}} \frac{\mathrm{1}}{\left[\left({D}^{\mathrm{2}} +{i}\mathrm{2}{D}−\mathrm{1}\right)+\mathrm{1}\right]^{\mathrm{2}} }{x}^{\mathrm{2}} \\ $$$$={e}^{{ix}} \frac{\mathrm{1}}{\left({D}^{\mathrm{2}} +{i}\mathrm{2}{D}\right)^{\mathrm{2}} }{x}^{\mathrm{2}} \\ $$$$={e}^{{ix}} \frac{\mathrm{1}}{{D}^{\mathrm{4}} +{i}\mathrm{4}{D}^{\mathrm{3}} −\mathrm{4}{D}^{\mathrm{2}} }{x}^{\mathrm{2}} \\ $$$$={e}^{{ix}} \frac{\mathrm{1}}{{D}^{\mathrm{2}} \:}\left(\frac{\mathrm{1}}{{D}^{\mathrm{2}} +{i}\mathrm{4}{D}−\mathrm{4}}{x}^{\mathrm{2}} \right) \\ $$$$={e}^{{ix}} \frac{\mathrm{1}}{{D}^{\mathrm{2}} }\left({D}^{\mathrm{2}} +{i}\mathrm{4}{D}−\mathrm{4}\right)^{−\mathrm{1}} {x}^{\mathrm{2}} \\ $$$$={e}^{{ix}} \frac{\mathrm{1}}{{D}^{\mathrm{2}} }\left[−\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{1}+\left(−\frac{{D}^{\mathrm{2}} +{i}\mathrm{4}{D}}{\mathrm{4}}\right)\right)^{−\mathrm{1}} {x}^{\mathrm{2}} \right] \\ $$$${skipping}\:{the}\:{expansion}\:{part} \\ $$$$={e}^{{ix}} \frac{\mathrm{1}}{{D}^{\mathrm{2}} }\left[−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{8}}−\frac{{ix}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\right] \\ $$$$={e}^{{ix}} \left[\frac{{x}^{\mathrm{2}} }{\mathrm{4}}−\frac{{x}^{\mathrm{4}} }{\mathrm{48}}−\frac{{ix}^{\mathrm{3}} }{\mathrm{12}}−\frac{{x}^{\mathrm{2}} }{\mathrm{16}}\right] \\ $$$$={e}^{{ix}} \left[\frac{\mathrm{3}{x}^{\mathrm{2}} }{\mathrm{16}}−\frac{{x}^{\mathrm{4}} }{\mathrm{48}}−\frac{{ix}^{\mathrm{3}} }{\mathrm{12}}\right] \\ $$$$=\left({cosx}+{isinx}\right)\left[\frac{\mathrm{3}{x}^{\mathrm{2}} }{\mathrm{16}}−\frac{{x}^{\mathrm{4}} }{\mathrm{48}}−\frac{{ix}^{\mathrm{3}} }{\mathrm{12}}\right] \\ $$$${taking}\:{only}\:{the}\:{real}\:{part}\:{of}\:{the}\:{expansion} \\ $$$${y}_{{p}} =\frac{\mathrm{3}{x}^{\mathrm{2}} {cosx}}{\mathrm{16}}−\frac{{x}^{\mathrm{4}} {cosx}}{\mathrm{48}}+\frac{{x}^{\mathrm{3}} {sinx}}{\mathrm{12}} \\ $$$${y}=\left({C}_{\mathrm{1}} +{xC}_{\mathrm{2}} \right)\mathrm{cos}\:\left({x}\right)+\left({C}_{\mathrm{3}} +{xC}_{\mathrm{4}} \right)\mathrm{sin}\:\left({x}\right)+\frac{\mathrm{3}{x}^{\mathrm{2}} {cosx}}{\mathrm{16}}−\frac{{x}^{\mathrm{4}} {cosx}}{\mathrm{48}}+\frac{{x}^{\mathrm{3}} {sinx}}{\mathrm{12}} \\ $$$${it}\:{got}\:{really}\:{messy}\:{doing}\:{this}\:{i}\:{might}\:{have} \\ $$$${made}\:{mistakes}\:{with}\:{the}\:{signs}. \\ $$

Commented by john santu last updated on 28/Apr/20

what type the diff eq sir?

$${what}\:{type}\:{the}\:{diff}\:{eq}\:{sir}? \\ $$

Commented by MWSuSon last updated on 28/Apr/20

fourth order constant coefficient

Answered by MWSuSon last updated on 28/Apr/20

intresting complimentary function

$${intresting}\:{complimentary}\:{function} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com