Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 91220 by Ar Brandon last updated on 28/Apr/20

∫_1 ^x ((lnt)/(1+t^2 ))dt

$$\int_{\mathrm{1}} ^{\mathrm{x}} \frac{\mathrm{lnt}}{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }\mathrm{dt} \\ $$

Commented by abdomathmax last updated on 28/Apr/20

let take a try    if x>1    we do the changement t=(1/u) ⇒  I =−∫_(1/x) ^1  ((−lnu)/(1+(1/u^2 )))(−(du/u^2 )) =−∫_(1/x) ^1  ((lnu)/(1+u^2 ))du  =−∫_(1/x) ^1 lnu(Σ_(n=0) ^∞ (−1)^n  u^(2n) )du  =Σ_(n=0) ^∞ (−1)^(n+1)  ∫_(1/x) ^1  u^(2n)  ln u du =Σ_(n=0) ^∞ (−1)^(n+1)  U_n   U_n =∫_(1/x) ^1  u^(2n)  ln(u)du =_(by parts)   [(u^(2n+1) /(2n+1))lnu]_(1/x) ^1   −∫_(1/x) ^1  (u^(2n) /(2n+1))du =(1/(2n+1))((lnx)/x^(2n+1) )−(1/(2n+1))[(1/(2n+1))u^(2n+1) ]_(1/x) ^1   =((ln(x))/((2n+1)x^(2n+1) ))−(1/((2n+1)^2 ))(1−(1/x^(2n+1) )) ⇒  I =−lnx Σ_(n=0) ^∞  (((−1)^n )/((2n+1)x^(2n+1) )) +Σ_(n=0) ^∞  (((−1)^n )/((2n+1)^2 ))  −Σ_(n=0) ^∞  (((−1)^n )/((2n+1)^2 x^(2n+1) ))  rest to calculate those sums  if x<1   I =−∫_x ^1   ((lnt)/(1+t^2 ))dt  =−∫_x ^1   lnt(Σ_(n=0) ^∞ (−1)^n  t^(2n) )dt  =−Σ_(n=0) ^∞  (−1)^n  ∫_x ^1  t^(2n)  lnt dt   and we follow the   same way ....be continued...

$${let}\:{take}\:{a}\:{try}\:\: \\ $$$${if}\:{x}>\mathrm{1}\:\:\:\:{we}\:{do}\:{the}\:{changement}\:{t}=\frac{\mathrm{1}}{{u}}\:\Rightarrow \\ $$$${I}\:=−\int_{\frac{\mathrm{1}}{{x}}} ^{\mathrm{1}} \:\frac{−{lnu}}{\mathrm{1}+\frac{\mathrm{1}}{{u}^{\mathrm{2}} }}\left(−\frac{{du}}{{u}^{\mathrm{2}} }\right)\:=−\int_{\frac{\mathrm{1}}{{x}}} ^{\mathrm{1}} \:\frac{{lnu}}{\mathrm{1}+{u}^{\mathrm{2}} }{du} \\ $$$$=−\int_{\frac{\mathrm{1}}{{x}}} ^{\mathrm{1}} {lnu}\left(\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \:{u}^{\mathrm{2}{n}} \right){du} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \:\int_{\frac{\mathrm{1}}{{x}}} ^{\mathrm{1}} \:{u}^{\mathrm{2}{n}} \:{ln}\:{u}\:{du}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \:{U}_{{n}} \\ $$$${U}_{{n}} =\int_{\frac{\mathrm{1}}{{x}}} ^{\mathrm{1}} \:{u}^{\mathrm{2}{n}} \:{ln}\left({u}\right){du}\:=_{{by}\:{parts}} \:\:\left[\frac{{u}^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{2}{n}+\mathrm{1}}{lnu}\right]_{\frac{\mathrm{1}}{{x}}} ^{\mathrm{1}} \\ $$$$−\int_{\frac{\mathrm{1}}{{x}}} ^{\mathrm{1}} \:\frac{{u}^{\mathrm{2}{n}} }{\mathrm{2}{n}+\mathrm{1}}{du}\:=\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}\frac{{lnx}}{{x}^{\mathrm{2}{n}+\mathrm{1}} }−\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}\left[\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}{u}^{\mathrm{2}{n}+\mathrm{1}} \right]_{\frac{\mathrm{1}}{{x}}} ^{\mathrm{1}} \\ $$$$=\frac{{ln}\left({x}\right)}{\left(\mathrm{2}{n}+\mathrm{1}\right){x}^{\mathrm{2}{n}+\mathrm{1}} }−\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }\left(\mathrm{1}−\frac{\mathrm{1}}{{x}^{\mathrm{2}{n}+\mathrm{1}} }\right)\:\Rightarrow \\ $$$${I}\:=−{lnx}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right){x}^{\mathrm{2}{n}+\mathrm{1}} }\:+\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$−\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} {x}^{\mathrm{2}{n}+\mathrm{1}} }\:\:{rest}\:{to}\:{calculate}\:{those}\:{sums} \\ $$$${if}\:{x}<\mathrm{1}\:\:\:{I}\:=−\int_{{x}} ^{\mathrm{1}} \:\:\frac{{lnt}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$$=−\int_{{x}} ^{\mathrm{1}} \:\:{lnt}\left(\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \:{t}^{\mathrm{2}{n}} \right){dt} \\ $$$$=−\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}} \:\int_{{x}} ^{\mathrm{1}} \:{t}^{\mathrm{2}{n}} \:{lnt}\:{dt}\:\:\:{and}\:{we}\:{follow}\:{the}\: \\ $$$${same}\:{way}\:....{be}\:{continued}... \\ $$

Commented by Ar Brandon last updated on 28/Apr/20

��

Commented by mathmax by abdo last updated on 29/Apr/20

thankx

$${thankx} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com