Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 91268 by mathmax by abdo last updated on 29/Apr/20

let A = (((1       2)),((1     −1)) )  1) calculste A^n   2) determine  e^A   and e^(−2A)   3)find cos(A)and sinA   is cos^2 A +sin^2 A =I?  4) determine sh(A) and ch(A)  is ch^2 A−sh^2 A =I  ?

letA=(1211)1)calculsteAn2)determineeAande2A3)findcos(A)andsinAiscos2A+sin2A=I?4)determinesh(A)andch(A)isch2Ash2A=I?

Commented by mathmax by abdo last updated on 29/Apr/20

1) the caracteristic polynom is p(x)=det (A−xI)  = determinant (((1−x        2)),((1           −1−x)))=−(1+x)(1−x)−2 =−(1−x^2 )−2  =−1+x^2 −2 =x^2 −3 =(x−(√3))(x+(√3))  p(x)=0 ⇔x =+^− (√3)  x^n  =Qp(x)+u_n x +v_n  ⇒((√3))^n  =u_n (√3)+v_n   (−(√3))^n  =−(√3)u_n  +v_n  ⇒((√3))^n −(−(√3))^n  =2(√3)u_n  ⇒  u_n =((((√3))^n −(−(√3))^n )/(2(√3))) and  ((√3))^n  +(−(√3))^n  =2v_n  ⇒  v_n =((((√3))^n  +(−(√3))^n )/2)  A^n  =Q(A)p(A)+u_n  A +v_n I    =u_n A +v_n I   (P(A)=0 by cayley hamiton)  ⇒A^n  =((((√3))^n −(−(√3))^n )/(2(√3))) (((1         2)),((1        −1)) ) +((((√3))^n +(−(√3))^n )/2) (((1       0)),((0         1)) )  A^n  = (((((((√3))^n −(−(√3))^n )/(2(√3)))                 ((((√3))^n −(−(√3))^n )/(√3)))),((((((√3))^n −(−(√3))^n )/(2(√3)))                   (((−(√3))^n −((√3))^n )/(2(√3))))) )  + (((((((√3))^n  +(−(√3))^n )/2)                0)),((0                                 ((((√3))^n +(−(√3))^n )/2))) )  = (((((((√3))^n −(−(√3))^n  +((√3))((√3))^n +(√3)(−(√3))^n )/(2(√3)))             ((((√3))^n −(−(√3))^n )/(√3)))),((((((√3))^n −(−(√3))^n )/(2(√3)))                                        (((−(√3))^n −((√3))^n  +(√3)((√3))^n +(√3)(−(√3))^n )/(2(√3))))) )  A^n  = ((((((1+(√3))((√3))^n +((√3)−1)(−(√3))^n )/(2(√3)))               ((((√3))^n −(−(√3))^n )/(√3)))),((((((√3))^n −(−(√3))^n )/(2(√3)))                                    ((((√3)−1)((√3))^n +(1+(√3))(−(√3))^n )/(2(√3))))) )

1)thecaracteristicpolynomisp(x)=det(AxI)=|1x211x|=(1+x)(1x)2=(1x2)2=1+x22=x23=(x3)(x+3)p(x)=0x=+3xn=Qp(x)+unx+vn(3)n=un3+vn(3)n=3un+vn(3)n(3)n=23unun=(3)n(3)n23and(3)n+(3)n=2vnvn=(3)n+(3)n2An=Q(A)p(A)+unA+vnI=unA+vnI(P(A)=0bycayleyhamiton)An=(3)n(3)n23(1211)+(3)n+(3)n2(1001)An=((3)n(3)n23(3)n(3)n3(3)n(3)n23(3)n(3)n23)+((3)n+(3)n200(3)n+(3)n2)=((3)n(3)n+(3)(3)n+3(3)n23(3)n(3)n3(3)n(3)n23(3)n(3)n+3(3)n+3(3)n23)An=((1+3)(3)n+(31)(3)n23(3)n(3)n3(3)n(3)n23(31)(3)n+(1+3)(3)n23)

Commented by mathmax by abdo last updated on 29/Apr/20

A^(2p)  =   ((((((1+(√3))3^p +((√3)−1)3^p )/(2(√3)))                  0)),((0                                       ((((√3)−1)3^p  +(1+(√3))3^p )/(2(√3))))) )  = (((3^p                0)),((0             3^p )) )  A^(2p+1)   = ((((((1+(√3))(√3)3^p  +((√3)−1)(−(√3))3^p )/(2(√3)))                 (((√3)3^p  −(−(√3))3^p )/(√3)))),(((((√3)3^p −(−(√3))3^p )/(2(√3)))                                           ((((√3)−1)(√3)3^p +(1+(√3))(−(√3))3^p )/(2(√3))))) )  = (((3^p                  2.3^p )),((2.3^p                −3^p )) )

A2p=((1+3)3p+(31)3p2300(31)3p+(1+3)3p23)=(3p003p)A2p+1=((1+3)33p+(31)(3)3p2333p(3)3p333p(3)3p23(31)33p+(1+3)(3)3p23)=(3p2.3p2.3p3p)

Commented by mathmax by abdo last updated on 29/Apr/20

sorry  A^(2p+1) = (((3^p               2 .3^p )),((3^p                  −3^p )) )

sorryA2p+1=(3p2.3p3p3p)

Commented by mathmax by abdo last updated on 29/Apr/20

2) e^A  =Σ_(n=0) ^∞  (A^n /(n!)) =Σ_(n=0) ^∞  (A^(2n) /((2n)!)) +Σ_(n=0) ^∞  (A^(2n+1) /((2n+1)!))  =Σ_(n=0) ^∞  (1/((2n)!)) (((3^n         0)),((0           3^n )) )  +Σ_(n=0) ^∞  (1/((2n+1)!))  (((3^n           23^n )),((3^n           −3^n )) )  = (((Σ_(n=0) ^∞  (3^n /((2n)!))              0)),((0                           Σ_(n=0) ^∞  (3^n /((2n)!)))) ) + (((Σ_(n=0) ^∞  (3^n /((2n+1)!))        2Σ_(n=0) ^∞  (3^n /((2n+1)!)))),((Σ_(n=0) ^∞  (3^n /((2n+1)!))          −Σ_(n=0) ^∞  (3^n /((2n+1)!)))) )

2)eA=n=0Ann!=n=0A2n(2n)!+n=0A2n+1(2n+1)!=n=01(2n)!(3n003n)+n=01(2n+1)!(3n23n3n3n)=(n=03n(2n)!00n=03n(2n)!)+(n=03n(2n+1)!2n=03n(2n+1)!n=03n(2n+1)!n=03n(2n+1)!)

Commented by mathmax by abdo last updated on 29/Apr/20

we have Σ_(n=0) ^∞  (3^n /((2n)!)) =Σ_(n=0) ^∞   ((((√3))^(2n) )/((2n)!)) =cos((√3))  Σ_(n=0) ^∞  (3^n /((2n+1)!)) =(1/(√3))Σ_(n=0) ^∞  ((((√3))^(2n+1) )/((2n+1)!)) =(1/(√3))sin((√3)) ⇒  e^A  = (((cos((√3))         0)),((0                 cos((√3)))) )  + ((((1/(√3))sin((√3))          (2/(√3))sin((√3)))),(((1/(√3))sin((√3))            −(1/(√3))sin((√3)))) )  = (((cos((√3))+(1/(√3))sin((√3))             (2/(√3))sin((√3)))),(((1/(√3))sin((√3))                         cos((√3))−(1/((√3) ))sin((√3)))) )

wehaven=03n(2n)!=n=0(3)2n(2n)!=cos(3)n=03n(2n+1)!=13n=0(3)2n+1(2n+1)!=13sin(3)eA=(cos(3)00cos(3))+(13sin(3)23sin(3)13sin(3)13sin(3))=(cos(3)+13sin(3)23sin(3)13sin(3)cos(3)13sin(3))

Terms of Service

Privacy Policy

Contact: info@tinkutara.com