Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 91321 by  M±th+et+s last updated on 29/Apr/20

1)find eigen values and corresponding  eigen vector of the matrix    A= [((cos(θ)),(−sin(θ))),((sin(θ)),(     cos(θ))) ]    2)solve    6y^2 dx−x(y+2x^2 )dy=0

1)findeigenvaluesandcorrespondingeigenvectorofthematrixA=[cos(θ)sin(θ)sin(θ)cos(θ)]2)solve6y2dxx(y+2x2)dy=0

Commented by mathmax by abdo last updated on 30/Apr/20

1) P(x) =det(A−xI) = determinant (((cosθ−x         −sinθ)),((sinθ              cosθ−x)))  =(cosθ−x)^2  +sin^2 θ   P(x)=0 ⇔(x−cosθ)^2  +sin^2 θ =0⇔(x−cosθ)^2  =(isinθ)^2  ⇒  x−cosθ =+^− isinθ ⇒x =cosθ +^− isinθ  so the values are  λ_1 =e^(iθ)   and λ_2 =e^(−iθ)   V(λ_1 )=Ker(A−λ_1 I) ={u /(A−λ_1 I)u =0}  u ((x),(y) )       (A−λ_1 )u=0 ⇒ (((cosθ−e^(iθ)          −sinθ)),((sinθ                 cosθ−e^(iθ) )) )  ((x),(y) )=0 ⇒   (((−isinθ             −sinθ)),((sinθ                −isinθ)) ) ((x),(y) )=0 ⇒ { ((−isinθ x−sinθy =0)),((sinθx −isinθy =0)) :}  ⇒ { ((isinθ x+sinθ y =0)),((sinθ x−isinθ y=0 ⇒sinθ x =isinθ y)) :}  if sinθ ≠0 ⇒x =iy ⇒(x,y)=(iy,y) =y e_1     with e_1  ((i),(1) )  V(λ_2 ) =Ker(A−λ_2 I) ={u /(A−λ_2 I)u =0}  (A−λ_2 I)u =0 ⇒ (((cosθ −e^(−iθ)         −sinθ)),((sinθ                  cosθ −e^(−iθ) )) ) ((x),(y) )=0 ⇒   (((isinθ         −sinθ)),((sinθ              isinθ)) ) ((x),(y) )=0 ⇒ { ((isinθ x−sinθy =0)),((sinθ x +isinθ y =0 )) :}  ⇒sinθ x =−isinθ y so if sinθ ≠0 we get x=−iy ⇒  (x,y) =(−iy,y)=ye_2   with e_2  (((−i)),(1) )  We see  V(λ_1 ) =Δ_e_1         dim(V(λ_1 ))=1  V(λ_2 )=Δ_(e_2  )      and dim(V(λ_2 ))=1  A is diagonalisable....

1)P(x)=det(AxI)=|cosθxsinθsinθcosθx|=(cosθx)2+sin2θP(x)=0(xcosθ)2+sin2θ=0(xcosθ)2=(isinθ)2xcosθ=+isinθx=cosθ+isinθsothevaluesareλ1=eiθandλ2=eiθV(λ1)=Ker(Aλ1I)={u/(Aλ1I)u=0}u(xy)(Aλ1)u=0(cosθeiθsinθsinθcosθeiθ)(xy)=0(isinθsinθsinθisinθ)(xy)=0{isinθxsinθy=0sinθxisinθy=0{isinθx+sinθy=0sinθxisinθy=0sinθx=isinθyifsinθ0x=iy(x,y)=(iy,y)=ye1withe1(i1)V(λ2)=Ker(Aλ2I)={u/(Aλ2I)u=0}(Aλ2I)u=0(cosθeiθsinθsinθcosθeiθ)(xy)=0(isinθsinθsinθisinθ)(xy)=0{isinθxsinθy=0sinθx+isinθy=0sinθx=isinθysoifsinθ0wegetx=iy(x,y)=(iy,y)=ye2withe2(i1)WeseeV(λ1)=Δe1dim(V(λ1))=1V(λ2)=Δe2anddim(V(λ2))=1Aisdiagonalisable....

Commented by  M±th+et+s last updated on 30/Apr/20

nice and correct work sir god bless you

niceandcorrectworksirgodblessyou

Commented by turbo msup by abdo last updated on 30/Apr/20

you are welcome .

youarewelcome.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com