All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 91326 by mhmd last updated on 29/Apr/20
Commented by mathmax by abdo last updated on 30/Apr/20
I=∫dx(x−1)2x2−x+1⇒I=x−1=t∫dtt2(t+1)2−(t+1)+1=∫dtt2t2+2t+1−t−1+1=∫dtt2t2+t+1=∫dtt2(t+12)2+34=t+12=32sh(u)23∫1(32sh(u)−12)2ch(u)×32ch(u)du=4∫du(3shu−1)2=4∫du3sh2(u)−23shu+1=4∫du32(ch(2u)−1)−23shu+1=8∫du3ch(2u)−3−43shu+2=8∫du3sh(2u)−43sh(u)−1=8∫du3e2u−e−2u2−43×eu−e−u2−1=16∫du3e2u−3e−2u−43eu+43e−u−2=eu=z16∫dzz(3z2−3z−2−43z+43z−1−2)=16∫z2dzz(3z4−3−43z3+43z−2z2)=16∫z2dzz(3z4−43z3−2z2+43z−3)decompositionofF(z)=z2z(3z4−43z3−2z2+43z−3)...becontinued...
Answered by MJS last updated on 30/Apr/20
2)r=x2−x+1⇔x=1+4r2−32r=32coshss=lnt⇒x=3t2+2t−34t⇔t=2x−1+2x2−x+13∫dx(x−1)2x2−x+1=[t=2x−1+2x2−x+13→dx=3(t2+1)4t2dt]=163∫t(t−3)2(t+33)2dt==3∫dt(t−3)2−33∫dt(t+33)2−12∫dtt−3+12∫dtt+33==−3t−3+33t+3−12ln(t−3)+12ln(t+33)==−2(3t+3)(t−3)(3t+3)+12ln3t+3t−3==−x2−x+1x−1+12lnx+1+2x2−x+1x−1+C
1)∫π0xcsc3x+cot2xcscxdx==∫π0xsin3x1+cos2xdx=bypartsu′=sin3x1+cos2x→u=(∗)cosx−2arctancosxv=x→v′=1=[x(cosx−2arctancosx)]0π−∫π0(cosx−2arctancosx)dx=[theintegraliszero!]=π(π2−1)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com