Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 91421 by  M±th+et+s last updated on 30/Apr/20

∫_1 ^3 (1/(x(√(3x^2 +2x−1))))dx

131x3x2+2x1dx

Commented by abdomathmax last updated on 30/Apr/20

I =∫_1 ^3   (dx/(x(√(3x^2 +2x−1))))  3x^2  +2x−1=0→ Δ^′ =1+3 =4 ⇒x_1 =((−1+2)/3)=(1/3)  x_2 =((−1−2)/3) =−1 ⇒I =∫_1 ^3  (dx/(x(√(3(x−(1/3))(x+1)))))  = ∫_1 ^3  (dx/(x(√((3x−1)(x+1))))) =∫_1 ^3  (dx/(x(√(x+1))(√(3x−1))))  we do the changement (√(x+1))=t ⇒x+1 =t^2  ⇒  I =∫_(√2) ^2   ((2tdt)/((t^2 −1)(√(3(t^2 −1)−1))))  =∫_(√2) ^2   ((2t dt)/((t^2 −1)(√(3t^2 −4)))) =(2/(√3))∫_(√2) ^2  ((tdt)/((t^2 −1)(√(t^2 −(4/3)))))  =_(t =(2/(√3)) ch(u)→u=argch(((t(√3))/2)))    (2/(√3))∫_(argch(((√6)/2))) ^(argch((√3)))  ((2/(√3)))^2 ×((chu shu)/(((4/(√3))ch^2 u−1)(2/(√3)) shu))du  =(4/(√3)) ∫_(argch(((√6)/2))) ^(argch((√3)))  ((shu)/((4ch^2 u−(√3))))du  =(4/(√3)) ∫_(argch(((√6)/2))) ^(argch((√3)))   ((shu)/((4×((1+ch(2u))/2)−(√3))))du  =(4/(√3)) ∫_(argch(((√6)/2))) ^(argch((√3)))    ((shu)/((2ch(2u)+2−(√3))))du  =(4/(√3)) ∫_(argch(((√6)/2))) ^(argch((√3)))   (((e^u −e^(−u) )/2)/(e^(2u)  +e^(−2u)  +2−(√3)))du  =(2/(√3)) ∫_(((√6)/2)+(√((6/4)−1))) ^((√3)+(√2))     ((z−z^(−1) )/(z^2  +z^(−2)  +2−(√3))) (dz/z)   (z=e^u )  =(2/(√3)) ∫_(((√6)/2)+((√2)/2)) ^((√3)+(√2))      ((z^2 −1)/(z^4  +1+(2−(√3))z^2 ))dz  =(2/(√3))∫_(((√6)/2)+((√2)/2)) ^((√3)+(√2))     ((z^2 −1)/(z^4  +(2−(√3))z^2  +1))dx let ddcompose  F(z) =((z^2 −1)/(z^4  +(2−(√3))z^2 +1)) ...be continued...

I=13dxx3x2+2x13x2+2x1=0Δ=1+3=4x1=1+23=13x2=123=1I=13dxx3(x13)(x+1)=13dxx(3x1)(x+1)=13dxxx+13x1wedothechangementx+1=tx+1=t2I=222tdt(t21)3(t21)1=222tdt(t21)3t24=2322tdt(t21)t243=t=23ch(u)u=argch(t32)23argch(62)argch(3)(23)2×chushu(43ch2u1)23shudu=43argch(62)argch(3)shu(4ch2u3)du=43argch(62)argch(3)shu(4×1+ch(2u)23)du=43argch(62)argch(3)shu(2ch(2u)+23)du=43argch(62)argch(3)eueu2e2u+e2u+23du=2362+6413+2zz1z2+z2+23dzz(z=eu)=2362+223+2z21z4+1+(23)z2dz=2362+223+2z21z4+(23)z2+1dxletddcomposeF(z)=z21z4+(23)z2+1...becontinued...

Commented by jagoll last updated on 30/Apr/20

∫ (dx/(x (√(x^2 (3+(2/x)−(1/x^2 ))))))  ∫ (dx/(x^2  (√(−((1/x^2 )−(2/x)+1)+4))))  ∫ (dx/(x^2  (√(4−((1/x)−1)^2 ))))  [ let (1/x)−1 = t   (dx/x^2 ) = −dt   ∫ ((−dt)/(√(4−t^2 ))) . now easy to solve

dxxx2(3+2x1x2)dxx2(1x22x+1)+4dxx24(1x1)2[let1x1=tdxx2=dtdt4t2.noweasytosolve

Answered by jagoll last updated on 30/Apr/20

Commented by  M±th+et+s last updated on 30/Apr/20

nice work thanks

niceworkthanks

Answered by MJS last updated on 01/May/20

x^2 (3x^2 +2x−1)=x^2 (x+1)(3x−1)  let x=(1/(at+b))  −(((at+b−3)(at+b+1))/((at+b)^4 ))  at+b−3=t−c ⇔ (a−1)t+b+c−3=0  at+b+1=t+c ⇔ (a−1)t+b−c+1=0  ⇒ a=1  b+c−3=0∧b−c+1=0 ⇒ b=1∧k=2  −(((t−2)(t+2))/((t+1)^4 ))  let t=2u  −((4(u−1)(u+1))/((2u+1)^4 ))  ⇒  let x=(1/(2sin u+1)) ⇔ u=arcsin ((x−1)/(2x)) → dx=x(√(3x^2 +2x−1))du  ∫(dx/(x(√(3x^2 +2x−1))))=∫du=u=arcsin ((x−1)/(2x)) +C

x2(3x2+2x1)=x2(x+1)(3x1)letx=1at+b(at+b3)(at+b+1)(at+b)4at+b3=tc(a1)t+b+c3=0at+b+1=t+c(a1)t+bc+1=0a=1b+c3=0bc+1=0b=1k=2(t2)(t+2)(t+1)4lett=2u4(u1)(u+1)(2u+1)4letx=12sinu+1u=arcsinx12xdx=x3x2+2x1dudxx3x2+2x1=du=u=arcsinx12x+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com