Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 91460 by  M±th+et+s last updated on 30/Apr/20

one of the conditions of the inflection  point is inflection tangent.  what is inflection tangent?

$${one}\:{of}\:{the}\:{conditions}\:{of}\:{the}\:{inflection} \\ $$$${point}\:{is}\:{inflection}\:{tangent}. \\ $$$${what}\:{is}\:{inflection}\:{tangent}? \\ $$

Answered by MJS last updated on 01/May/20

it′s the tangent in the inflection point which  also intersects the curve in the inflection  point  I once learned these things with these  elementar functions    y=ax+b, a≠0  y′=a ⇒ constant slope, no curvature    y=ax^2 +bx+c, a≠0  y′=2ax+b       zero at x=−(b/(2a))       ⇒ extreme point  y′′=2a ⇒ constant curvature depending on       the sign of a        {: ((a<0 ⇒ maximum)),((a>0 ⇒ minimum)) } at x=−(b/(2a))    y=ax^3 +bx^2 +cx+d, a≠0  y′=3ax^2 +2bx+c       zeros at x=−((b±(√(b^2 −3ac)))/(3a))       (1) 2 distinct zeros ∈R ⇒ extreme points       (2) 1 double zero ∈R ⇒ no extreme points            but an inflection point with horizontal            tangent       (3) 2 zeros ∉R ⇒ no extreme points  in both cases  y′′=6ax+2b ⇒ curvature changes       zero at x=−(b/(3a))       ⇒ inflection point  y′′′=6a  { ((a<0 ⇒ curvature changes − to +)),((a>0 ⇒ curvature changes + to −)) :}  the inflection tangent also intersects the  curve at x=−(b/(3a))    y=ax^4 +bx^3 +cx^2 +dx+e, a≠0  y′=4ax^3 +3bx^2 +2cx+d  now it′s getting complicated       (1) 3 distinct zeros ∈R       (2) 2 double and 1 solitaire zeros ∈R       (3) one triple zero ∈R       (4) 1 zero ∈R and 2 zeros ∉R  we can get 3, 2 or extremes, flat points and  a saddle point  saddle point:  y=x^2 , y′=2x, y′′=2>0       minimum at y=0  y=x^3 , y′=3x^2 , y′′=6x, y′′′=6>0       no extremes       inflection point at x=0 with horizontal       tangent, curvature changes from − to +  y=x^4 , y′=4x^3 , y′′=12x^2 , y′′′=24x       minimum at x=0 but y′′=0!? ⇒^?        ⇒^?  inflection point? but the curvature       doesn′t change (y′′′=0) ⇒ this is called       a saddle point

$$\mathrm{it}'\mathrm{s}\:\mathrm{the}\:\mathrm{tangent}\:\mathrm{in}\:\mathrm{the}\:\mathrm{inflection}\:\mathrm{point}\:\mathrm{which} \\ $$$$\mathrm{also}\:\mathrm{intersects}\:\mathrm{the}\:\mathrm{curve}\:\mathrm{in}\:\mathrm{the}\:\mathrm{inflection} \\ $$$$\mathrm{point} \\ $$$$\mathrm{I}\:\mathrm{once}\:\mathrm{learned}\:\mathrm{these}\:\mathrm{things}\:\mathrm{with}\:\mathrm{these} \\ $$$$\mathrm{elementar}\:\mathrm{functions} \\ $$$$ \\ $$$${y}={ax}+{b},\:{a}\neq\mathrm{0} \\ $$$${y}'={a}\:\Rightarrow\:\mathrm{constant}\:\mathrm{slope},\:\mathrm{no}\:\mathrm{curvature} \\ $$$$ \\ $$$${y}={ax}^{\mathrm{2}} +{bx}+{c},\:{a}\neq\mathrm{0} \\ $$$${y}'=\mathrm{2}{ax}+{b} \\ $$$$\:\:\:\:\:\mathrm{zero}\:\mathrm{at}\:{x}=−\frac{{b}}{\mathrm{2}{a}} \\ $$$$\:\:\:\:\:\Rightarrow\:\mathrm{extreme}\:\mathrm{point} \\ $$$${y}''=\mathrm{2}{a}\:\Rightarrow\:\mathrm{constant}\:\mathrm{curvature}\:\mathrm{depending}\:\mathrm{on} \\ $$$$\:\:\:\:\:\mathrm{the}\:\mathrm{sign}\:\mathrm{of}\:{a} \\ $$$$\:\:\:\:\:\left.\begin{matrix}{{a}<\mathrm{0}\:\Rightarrow\:\mathrm{maximum}}\\{{a}>\mathrm{0}\:\Rightarrow\:\mathrm{minimum}}\end{matrix}\right\}\:\mathrm{at}\:{x}=−\frac{{b}}{\mathrm{2}{a}} \\ $$$$ \\ $$$${y}={ax}^{\mathrm{3}} +{bx}^{\mathrm{2}} +{cx}+{d},\:{a}\neq\mathrm{0} \\ $$$${y}'=\mathrm{3}{ax}^{\mathrm{2}} +\mathrm{2}{bx}+{c} \\ $$$$\:\:\:\:\:\mathrm{zeros}\:\mathrm{at}\:{x}=−\frac{{b}\pm\sqrt{{b}^{\mathrm{2}} −\mathrm{3}{ac}}}{\mathrm{3}{a}} \\ $$$$\:\:\:\:\:\left(\mathrm{1}\right)\:\mathrm{2}\:\mathrm{distinct}\:\mathrm{zeros}\:\in\mathbb{R}\:\Rightarrow\:\mathrm{extreme}\:\mathrm{points} \\ $$$$\:\:\:\:\:\left(\mathrm{2}\right)\:\mathrm{1}\:\mathrm{double}\:\mathrm{zero}\:\in\mathbb{R}\:\Rightarrow\:\mathrm{no}\:\mathrm{extreme}\:\mathrm{points} \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{but}\:\mathrm{an}\:\mathrm{inflection}\:\mathrm{point}\:\mathrm{with}\:\mathrm{horizontal} \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{tangent} \\ $$$$\:\:\:\:\:\left(\mathrm{3}\right)\:\mathrm{2}\:\mathrm{zeros}\:\notin\mathbb{R}\:\Rightarrow\:\mathrm{no}\:\mathrm{extreme}\:\mathrm{points} \\ $$$$\mathrm{in}\:\mathrm{both}\:\mathrm{cases} \\ $$$${y}''=\mathrm{6}{ax}+\mathrm{2}{b}\:\Rightarrow\:\mathrm{curvature}\:\mathrm{changes} \\ $$$$\:\:\:\:\:\mathrm{zero}\:\mathrm{at}\:{x}=−\frac{{b}}{\mathrm{3}{a}} \\ $$$$\:\:\:\:\:\Rightarrow\:\mathrm{inflection}\:\mathrm{point} \\ $$$${y}'''=\mathrm{6}{a}\:\begin{cases}{{a}<\mathrm{0}\:\Rightarrow\:\mathrm{curvature}\:\mathrm{changes}\:−\:\mathrm{to}\:+}\\{{a}>\mathrm{0}\:\Rightarrow\:\mathrm{curvature}\:\mathrm{changes}\:+\:\mathrm{to}\:−}\end{cases} \\ $$$$\mathrm{the}\:\mathrm{inflection}\:\mathrm{tangent}\:\mathrm{also}\:\mathrm{intersects}\:\mathrm{the} \\ $$$$\mathrm{curve}\:\mathrm{at}\:{x}=−\frac{{b}}{\mathrm{3}{a}} \\ $$$$ \\ $$$${y}={ax}^{\mathrm{4}} +{bx}^{\mathrm{3}} +{cx}^{\mathrm{2}} +{dx}+{e},\:{a}\neq\mathrm{0} \\ $$$${y}'=\mathrm{4}{ax}^{\mathrm{3}} +\mathrm{3}{bx}^{\mathrm{2}} +\mathrm{2}{cx}+{d} \\ $$$$\mathrm{now}\:\mathrm{it}'\mathrm{s}\:\mathrm{getting}\:\mathrm{complicated} \\ $$$$\:\:\:\:\:\left(\mathrm{1}\right)\:\mathrm{3}\:\mathrm{distinct}\:\mathrm{zeros}\:\in\mathbb{R} \\ $$$$\:\:\:\:\:\left(\mathrm{2}\right)\:\mathrm{2}\:\mathrm{double}\:\mathrm{and}\:\mathrm{1}\:\mathrm{solitaire}\:\mathrm{zeros}\:\in\mathbb{R} \\ $$$$\:\:\:\:\:\left(\mathrm{3}\right)\:\mathrm{one}\:\mathrm{triple}\:\mathrm{zero}\:\in\mathbb{R} \\ $$$$\:\:\:\:\:\left(\mathrm{4}\right)\:\mathrm{1}\:\mathrm{zero}\:\in\mathbb{R}\:\mathrm{and}\:\mathrm{2}\:\mathrm{zeros}\:\notin\mathbb{R} \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{get}\:\mathrm{3},\:\mathrm{2}\:\mathrm{or}\:\mathrm{extremes},\:\mathrm{flat}\:\mathrm{points}\:\mathrm{and} \\ $$$$\mathrm{a}\:\mathrm{saddle}\:\mathrm{point} \\ $$$$\mathrm{saddle}\:\mathrm{point}: \\ $$$${y}={x}^{\mathrm{2}} ,\:{y}'=\mathrm{2}{x},\:{y}''=\mathrm{2}>\mathrm{0} \\ $$$$\:\:\:\:\:\mathrm{minimum}\:\mathrm{at}\:{y}=\mathrm{0} \\ $$$${y}={x}^{\mathrm{3}} ,\:{y}'=\mathrm{3}{x}^{\mathrm{2}} ,\:{y}''=\mathrm{6}{x},\:{y}'''=\mathrm{6}>\mathrm{0} \\ $$$$\:\:\:\:\:\mathrm{no}\:\mathrm{extremes} \\ $$$$\:\:\:\:\:\mathrm{inflection}\:\mathrm{point}\:\mathrm{at}\:{x}=\mathrm{0}\:\mathrm{with}\:\mathrm{horizontal} \\ $$$$\:\:\:\:\:\mathrm{tangent},\:\mathrm{curvature}\:\mathrm{changes}\:\mathrm{from}\:−\:\mathrm{to}\:+ \\ $$$${y}={x}^{\mathrm{4}} ,\:{y}'=\mathrm{4}{x}^{\mathrm{3}} ,\:{y}''=\mathrm{12}{x}^{\mathrm{2}} ,\:{y}'''=\mathrm{24}{x} \\ $$$$\:\:\:\:\:\mathrm{minimum}\:\mathrm{at}\:{x}=\mathrm{0}\:\mathrm{but}\:{y}''=\mathrm{0}!?\:\overset{?} {\Rightarrow} \\ $$$$\:\:\:\:\:\overset{?} {\Rightarrow}\:\mathrm{inflection}\:\mathrm{point}?\:\mathrm{but}\:\mathrm{the}\:\mathrm{curvature} \\ $$$$\:\:\:\:\:\mathrm{doesn}'\mathrm{t}\:\mathrm{change}\:\left({y}'''=\mathrm{0}\right)\:\Rightarrow\:\mathrm{this}\:\mathrm{is}\:\mathrm{called} \\ $$$$\:\:\:\:\:\mathrm{a}\:\mathrm{saddle}\:\mathrm{point} \\ $$

Commented by  M±th+et+s last updated on 01/May/20

very cool explanation.thank you very much

$${very}\:{cool}\:{explanation}.{thank}\:{you}\:{very}\:{much} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com