Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 91479 by Zainal Arifin last updated on 01/May/20

 ∫_(−π/2 ) ^(π/2)  (√(cos x−cos^3 x)) dx=...

π/2π/2cosxcos3xdx=...

Commented by jagoll last updated on 01/May/20

(√(cos x(1−cos^2 x))) = (√(cos x)) (√(sin^2 x))  ∫_(−(π/2)) ^0 (√(cos x)) (−sin x) dx + ∫_0 ^(π/2) (√(cos x)) sin x dx  now easy to solve

cosx(1cos2x)=cosxsin2x0π2cosx(sinx)dx+π20cosxsinxdxnoweasytosolve

Commented by Zainal Arifin last updated on 01/May/20

Ok. thanks

Ok.thanks

Commented by Prithwish Sen 1 last updated on 01/May/20

∫(√(cosx)) sinx dx  put cosx =t^2 ⇒−sinxdx=2tdt   = −∫t.2t.dt = −(2/3).(cosx)^(3/2)   ∫_(−(π/2)) ^(π/2) (√(cosx)).sinxdx = 2∫_0 ^(π/2) (√(cosx)).sinxdx=2[−(2/3)(cosx)^(2/3) ]_0 ^(π/2)   =2.[−(0−(2/3))]=(4/3)   please check.

cosxsinxdxputcosx=t2sinxdx=2tdt=t.2t.dt=23.(cosx)32π2π2cosx.sinxdx=20π2cosx.sinxdx=2[23(cosx)23]0π2=2.[(023)]=43pleasecheck.

Commented by jagoll last updated on 01/May/20

(√(sin^2 x )) ≠ sin x  (√(sin^2 x)) = ∣sin x∣

sin2xsinxsin2x=sinx

Answered by john santu last updated on 01/May/20

Commented by Prithwish Sen 1 last updated on 01/May/20

I think  in  0≤x≤(π/2)   sinx and cosx≥ 0  sorry fix it.

Ithinkin0xπ2sinxandcosx0sorryfixit.

Commented by jagoll last updated on 01/May/20

0≤x≥(π/2) = 0≤x≤(π/2) ?

0xπ2=0xπ2?

Commented by Prithwish Sen 1 last updated on 01/May/20

Thank you sir.

Thankyousir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com