Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 91493 by Zainal Arifin last updated on 01/May/20

∫_( 0) ^(π/2)  log (((4+3 sin x)/(4+3 cos x)))dx =

π/20log(4+3sinx4+3cosx)dx=

Commented by mathmax by abdo last updated on 01/May/20

I =∫_0 ^(π/2) ln(((1+(3/4)sinx)/(1+(3/4)cosx))) =∫_0 ^(π/2) ln(1+(3/4)sinx)−∫_0 ^(π/2) ln(1+(3/4)cosx)  let f(a) =∫_0 ^(π/2) ln(1+a sinx)  with 0<a<1  f^′ (a) =∫_0 ^(π/2)  ((sinx)/(1+asinx))dx =(1/a)∫_0 ^(π/2)  ((1+asinx−1)/(1+asinx))dx  =(π/(2a))−(1/a)∫_0 ^(π/2)  (dx/(1+asinx))  but ∫_0 ^(π/2)  (dx/(1+asinx)) =_(tan((x/2))=t)  ∫_0 ^1  ((2dt)/((1+t^2 )(1+a((2t)/(1+t^2 )))))  =2∫_0 ^1  (dt/(1+t^2  +2at)) =2 ∫_0 ^1  (dt/(t^2  +2at +1)) =2 ∫_0 ^1  (dt/((t+a)^2  +1−a^2 ))  =_(t+a =(√(1−a^2 ))u)      2 ∫_(a/(√(1−a^2 ))) ^((1+a)/(√(1−a^2 )))       (((√(1−a^2 ))du)/((1−a^2 )(1+u^2 )))  =(2/(√(1−a^2 )))( arctan(((1+a)/(√(1−a^2 ))))−arctan((a/(√(1−a^2 ))))) ⇒  f(a) =(π/2)ln(a)−2 ∫   (1/(a(√(1−a^2 )))) arctan(((1+a)/(√(1−a^2 ))))da  +2∫  (1/(a(√(1−a^2 )))) arctan((a/(√(1−a^2 )))) +c  we have  ∫  (1/(a(√(1−a^2 )))) arctan((a/(√(1−a^2 )))) =_(a=sinx)   ∫ (1/(sinx cosx))arctan(((sinx)/(cosx)))cosxdx  =∫  (x/(sinx)) dx  ∫  (1/(a(√(1−a^2 )))) arctan(((1+a)/(√(1−a^2 ))))da =_(a =cosx)   − ∫(1/(cosx sinx))arctan(((1+cosx)/(sinx)))sinxdx  =−∫  (1/(cosx)) arctan(((2cos^2 ((x/2)))/(2sin((x/2))cos((x/2)))))dx  =−∫ (1/(cosx)) arctan((1/(tanx)))dx =−∫ (1/(cosx))((π/2) −x)  =−(π/2)∫ (dx/(cosx)) +∫  (x/(cosx))dx....be continued...

I=0π2ln(1+34sinx1+34cosx)=0π2ln(1+34sinx)0π2ln(1+34cosx)letf(a)=0π2ln(1+asinx)with0<a<1f(a)=0π2sinx1+asinxdx=1a0π21+asinx11+asinxdx=π2a1a0π2dx1+asinxbut0π2dx1+asinx=tan(x2)=t012dt(1+t2)(1+a2t1+t2)=201dt1+t2+2at=201dtt2+2at+1=201dt(t+a)2+1a2=t+a=1a2u2a1a21+a1a21a2du(1a2)(1+u2)=21a2(arctan(1+a1a2)arctan(a1a2))f(a)=π2ln(a)21a1a2arctan(1+a1a2)da+21a1a2arctan(a1a2)+cwehave1a1a2arctan(a1a2)=a=sinx1sinxcosxarctan(sinxcosx)cosxdx=xsinxdx1a1a2arctan(1+a1a2)da=a=cosx1cosxsinxarctan(1+cosxsinx)sinxdx=1cosxarctan(2cos2(x2)2sin(x2)cos(x2))dx=1cosxarctan(1tanx)dx=1cosx(π2x)=π2dxcosx+xcosxdx....becontinued...

Answered by MJS last updated on 01/May/20

ln ((4+3sin x)/(4+3cos x)) =−ln ((4+3sin ((π/2)−x))/(4+3cos ((π/2)−x))) ⇒  ⇒ answer is 0

ln4+3sinx4+3cosx=ln4+3sin(π2x)4+3cos(π2x)answeris0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com