All Questions Topic List
UNKNOWN Questions
Previous in All Question Next in All Question
Previous in UNKNOWN Next in UNKNOWN
Question Number 91493 by Zainal Arifin last updated on 01/May/20
∫π/20log(4+3sinx4+3cosx)dx=
Commented by mathmax by abdo last updated on 01/May/20
I=∫0π2ln(1+34sinx1+34cosx)=∫0π2ln(1+34sinx)−∫0π2ln(1+34cosx)letf(a)=∫0π2ln(1+asinx)with0<a<1f′(a)=∫0π2sinx1+asinxdx=1a∫0π21+asinx−11+asinxdx=π2a−1a∫0π2dx1+asinxbut∫0π2dx1+asinx=tan(x2)=t∫012dt(1+t2)(1+a2t1+t2)=2∫01dt1+t2+2at=2∫01dtt2+2at+1=2∫01dt(t+a)2+1−a2=t+a=1−a2u2∫a1−a21+a1−a21−a2du(1−a2)(1+u2)=21−a2(arctan(1+a1−a2)−arctan(a1−a2))⇒f(a)=π2ln(a)−2∫1a1−a2arctan(1+a1−a2)da+2∫1a1−a2arctan(a1−a2)+cwehave∫1a1−a2arctan(a1−a2)=a=sinx∫1sinxcosxarctan(sinxcosx)cosxdx=∫xsinxdx∫1a1−a2arctan(1+a1−a2)da=a=cosx−∫1cosxsinxarctan(1+cosxsinx)sinxdx=−∫1cosxarctan(2cos2(x2)2sin(x2)cos(x2))dx=−∫1cosxarctan(1tanx)dx=−∫1cosx(π2−x)=−π2∫dxcosx+∫xcosxdx....becontinued...
Answered by MJS last updated on 01/May/20
ln4+3sinx4+3cosx=−ln4+3sin(π2−x)4+3cos(π2−x)⇒⇒answeris0
Terms of Service
Privacy Policy
Contact: info@tinkutara.com