All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 91534 by M±th+et+s last updated on 01/May/20
∫1∞sin2(x)x2dx
Commented by mathmax by abdo last updated on 01/May/20
wehave∫0∞sin2xx2dx=∫01sin2xx2dx+∫1∞sin2xx2dx⇒∫1∞sin2xx2dx=∫0∞sin2xx2dx−∫01sin2xx2dxwehavebyparts∫0∞sin2xx2dx=[−1xsin2x]0∞+∫0∞1x(2sinx)cosxdx=∫0∞sin(2x)xdx=2x=t∫0∞sintt2×dt2=∫0∞sinttdt=π2∫01sin2xx2dx=[−1xsin2x]01+∫011x(2sinx)cosxdx=−sin2(1)+∫01sin(2x)xdx=−sin2(1)+∫02sinttdt(t=2x)wehavesint=t−t36+o(t3)⇒t−t36⩽sint⩽t⇒1−t26⩽sintt⩽1⇒∫02(1−t26)dt⩽∫02sinttdt⩽2⇒[t−t318]02⩽∫02sinttdt⩽2⇒149⩽∫02sintt⩽2⇒v0=79+1=169isapproximatevalueforthisintegral⇒∫1∞sin2xx2dx∼π2+sin2(1)−169
Commented by M±th+et+s last updated on 01/May/20
greatsolutionthanxsir
youarewelcome
Terms of Service
Privacy Policy
Contact: info@tinkutara.com