Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 91534 by  M±th+et+s last updated on 01/May/20

∫_1 ^∞ ((sin^2 (x))/x^2 )dx

1sin2(x)x2dx

Commented by mathmax by abdo last updated on 01/May/20

we have ∫_0 ^∞  ((sin^2 x)/x^2 )dx =∫_0 ^1  ((sin^2 x)/x^2 )dx +∫_1 ^∞  ((sin^2 x)/x^2 )dx ⇒  ∫_1 ^∞  ((sin^2 x)/x^2 )dx =∫_0 ^∞  ((sin^2 x)/x^2 )dx−∫_0 ^1  ((sin^2 x)/x^2 )dx  we have by parts  ∫_0 ^∞  ((sin^2 x)/x^2 )dx =[−(1/x)sin^2 x]_0 ^∞ +∫_0 ^∞  (1/x)(2sinx)cosx dx  = ∫_0 ^∞   ((sin(2x))/x)dx =_(2x=t)   ∫_0 ^∞  ((sint)/(t/2))×(dt/2) =∫_0 ^∞  ((sint)/t)dt =(π/2)  ∫_0 ^1  ((sin^2 x)/x^2 )dx =[−(1/x)sin^2 x]_0 ^1  +∫_0 ^1  (1/x)(2sinx)cosx dx  =−sin^2 (1)+∫_0 ^1  ((sin(2x))/x)dx =−sin^2 (1)+ ∫_0 ^2  ((sint)/t)dt     (t=2x)  we have sint =t−(t^3 /6) +o(t^3 ) ⇒t−(t^3 /6)≤sint ≤t ⇒  1−(t^2 /6)≤((sint)/t)≤1 ⇒ ∫_0 ^2 (1−(t^2 /6))dt≤∫_0 ^2  ((sint)/t)dt≤2 ⇒  [t−(t^3 /(18))]_0 ^2  ≤ ∫_0 ^2  ((sint)/t)dt ≤2 ⇒((14)/9) ≤ ∫_0 ^2  ((sint)/t) ≤2  ⇒  v_0 =(7/9) +1 =((16)/9) is approximate value for this integral ⇒  ∫_1 ^∞  ((sin^2 x)/x^2 )dx ∼  (π/2) +sin^2 (1)−((16)/9)

wehave0sin2xx2dx=01sin2xx2dx+1sin2xx2dx1sin2xx2dx=0sin2xx2dx01sin2xx2dxwehavebyparts0sin2xx2dx=[1xsin2x]0+01x(2sinx)cosxdx=0sin(2x)xdx=2x=t0sintt2×dt2=0sinttdt=π201sin2xx2dx=[1xsin2x]01+011x(2sinx)cosxdx=sin2(1)+01sin(2x)xdx=sin2(1)+02sinttdt(t=2x)wehavesint=tt36+o(t3)tt36sintt1t26sintt102(1t26)dt02sinttdt2[tt318]0202sinttdt214902sintt2v0=79+1=169isapproximatevalueforthisintegral1sin2xx2dxπ2+sin2(1)169

Commented by  M±th+et+s last updated on 01/May/20

great solution thanx sir

greatsolutionthanxsir

Commented by mathmax by abdo last updated on 01/May/20

you are welcome

youarewelcome

Terms of Service

Privacy Policy

Contact: info@tinkutara.com