Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 91613 by  M±th+et+s last updated on 01/May/20

solve without using l′hopital  lim_(x→e) ((ln(x)−1)/((e/x)−1))

solvewithoutusinglhopitallimxeln(x)1ex1

Commented by abdomathmax last updated on 01/May/20

changement  (e/x)=t give   (x/e)=(1/t) ⇒x =(e/t)  lim_(x→e)     ((ln(x)−1)/((e/x)−1)) =lim_(t→1)    ((ln((e/t))−1)/(t−1))  =lim_(t→1)     ((−lnt)/(t−1)) =−lim_(t→1)    ((ln(t))/(t−1)) =−1

changementex=tgivexe=1tx=etlimxeln(x)1ex1=limt1ln(et)1t1=limt1lntt1=limt1ln(t)t1=1

Commented by  M±th+et+s last updated on 01/May/20

thank you sir

thankyousir

Commented by arcana last updated on 02/May/20

why lim_(t→1)  ((ln (t))/(t−1))=1 without L′Hopital?

whylimt1ln(t)t1=1withoutLHopital?

Commented by mathmax by abdo last updated on 02/May/20

lim_(t→t_0 )    ((f(t)−f(t_0 ))/(t−t_0 )) =f^′ (t_0 ) so  lim_(t→1)   ((ln(t))/(t−1)) =lim_(t→1)  ((ln(t)−ln(1))/(t−1)) =ln^′ (1) =1  (ln^′ (t)=(1/t))

limtt0f(t)f(t0)tt0=f(t0)solimt1ln(t)t1=limt1ln(t)ln(1)t1=ln(1)=1(ln(t)=1t)

Answered by mr W last updated on 02/May/20

let t=(e/x)−1  x→e ⇒t→0  ⇒x=(e/(1+t))  lim_(x→e) ((ln(x)−1)/((e/x)−1))  =lim_(t→0) ((ln (e/(1+t))−1)/t)  =−lim_(t→0) ((ln (1+t))/t)  =−lim_(t→0) {ln (1+t)^(1/t) }  =−lim_(n→∞) {ln (1+(1/n))^n }  ←definition of e  =−ln e  =−1

lett=ex1xet0x=e1+tlimxeln(x)1ex1=limt0lne1+t1t=limt0ln(1+t)t=limt0{ln(1+t)1t}=limn{ln(1+1n)n}definitionofe=lne=1

Commented by  M±th+et+s last updated on 02/May/20

god bless you sir

godblessyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com