Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 91621 by abdomathmax last updated on 02/May/20

calculate ∫_0 ^∞  sin(x^6 )dx

calculate0sin(x6)dx

Commented by mathmax by abdo last updated on 02/May/20

∫_0 ^∞  sin(x^6 )dx =Im(∫_0 ^∞  e^(ix^6 ) dx)  we have by changement ix^6  =−t  ⇒x^6  =it ⇒ x =(it)^(1/6)  =e^((iπ)/(12))  t^(1/6)  ⇒  ∫_0 ^∞  e^(ix^6 ) dx =e^((iπ)/(12)) ∫_0 ^∞    e^(−t)  ×(1/6) t^((1/6)−1)  dt  =(1/6)e^((iπ)/(12))   ∫_0 ^∞  t^((1/6)−1)  e^(−t)  dt     we have Γ(x) =∫_0 ^∞  t^(x−1)  e^(−t)  dt  =(1/6)Γ((1/6))(cos((π/(12)))+isin((π/(12)))) ⇒∫_0 ^∞  sin(x^6 )dx=(1/6)Γ((1/6))sin((π/(12)))

0sin(x6)dx=Im(0eix6dx)wehavebychangementix6=tx6=itx=(it)16=eiπ12t160eix6dx=eiπ120et×16t161dt=16eiπ120t161etdtwehaveΓ(x)=0tx1etdt=16Γ(16)(cos(π12)+isin(π12))0sin(x6)dx=16Γ(16)sin(π12)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com