Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 91715 by 174 last updated on 02/May/20

Commented by mathmax by abdo last updated on 02/May/20

let A_n =∫_0 ^(1/(√n))     ((n(√(1+x^4 )))/(1+n^2 x^2 ))dx changement nx =t give   A_n =∫_0 ^(√n)   ((n(√(1+(t^4 /n^4 ))))/(1+t^2 )) (dt/n) =∫_0 ^(√n)   ((√(1+(t^4 /n^4 )))/(1+t^2 )) dt  =∫_R   ϕ_n (t)dt  with  ϕ_n (t) =((√(1+(t^4 /n^4 )))/(1+t^2 )) χ_([0,(√n)) [(t)  ϕ_n  →^(cs)    ϕ =(1/(1+t^2 ))   and  ∣ϕ_n (t)∣≤(1/(1+t^2 ))  ∀ t ∈[0,(√n)[    theorem of conv.dominee give  lim_(n→+∞)  A_n =lim_(n→+∞)   ∫_R ϕ_n (t)dt =∫_R lim_(n→∞) ϕ_n (t)dt  =∫_0 ^∞   (dt/(1+t^2 )) =(π/2)

$${let}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\sqrt{{n}}}} \:\:\:\:\frac{{n}\sqrt{\mathrm{1}+{x}^{\mathrm{4}} }}{\mathrm{1}+{n}^{\mathrm{2}} {x}^{\mathrm{2}} }{dx}\:{changement}\:{nx}\:={t}\:{give}\: \\ $$$${A}_{{n}} =\int_{\mathrm{0}} ^{\sqrt{{n}}} \:\:\frac{{n}\sqrt{\mathrm{1}+\frac{{t}^{\mathrm{4}} }{{n}^{\mathrm{4}} }}}{\mathrm{1}+{t}^{\mathrm{2}} }\:\frac{{dt}}{{n}}\:=\int_{\mathrm{0}} ^{\sqrt{{n}}} \:\:\frac{\sqrt{\mathrm{1}+\frac{{t}^{\mathrm{4}} }{{n}^{\mathrm{4}} }}}{\mathrm{1}+{t}^{\mathrm{2}} }\:{dt} \\ $$$$=\int_{{R}} \:\:\varphi_{{n}} \left({t}\right){dt}\:\:{with}\:\:\varphi_{{n}} \left({t}\right)\:=\frac{\sqrt{\mathrm{1}+\frac{{t}^{\mathrm{4}} }{{n}^{\mathrm{4}} }}}{\mathrm{1}+{t}^{\mathrm{2}} }\:\chi_{\left[\mathrm{0},\sqrt{{n}}\right.} \left[\left({t}\right)\right. \\ $$$$\varphi_{{n}} \:\rightarrow^{{cs}} \:\:\:\varphi\:=\frac{\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{2}} }\:\:\:{and}\:\:\mid\varphi_{{n}} \left({t}\right)\mid\leqslant\frac{\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{2}} }\:\:\forall\:{t}\:\in\left[\mathrm{0},\sqrt{{n}}\left[\:\:\right.\right. \\ $$$${theorem}\:{of}\:{conv}.{dominee}\:{give} \\ $$$${lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} ={lim}_{{n}\rightarrow+\infty} \:\:\int_{{R}} \varphi_{{n}} \left({t}\right){dt}\:=\int_{{R}} {lim}_{{n}\rightarrow\infty} \varphi_{{n}} \left({t}\right){dt} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }\:=\frac{\pi}{\mathrm{2}} \\ $$

Commented by 174 last updated on 02/May/20

thanks

Commented by abdomathmax last updated on 02/May/20

you are welcome

$${you}\:{are}\:{welcome}\:\: \\ $$

Commented by abdomathmax last updated on 02/May/20

error of typpo ∣ϕ_n ∣≤((√2)/(1+t^2 ))

$${error}\:{of}\:{typpo}\:\mid\varphi_{{n}} \mid\leqslant\frac{\sqrt{\mathrm{2}}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com