Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 91744 by ajfour last updated on 02/May/20

Commented by ajfour last updated on 02/May/20

If  the red cubic curve has equation   y=x^3 +ax^2 +bx+c    while the  blue one is the same red  one, shifted such that two roots  are still common, find equation  of the blue one in terms of  a, b, c.x, y.

$${If}\:\:{the}\:{red}\:{cubic}\:{curve}\:{has}\:{equation} \\ $$$$\:\boldsymbol{{y}}=\boldsymbol{{x}}^{\mathrm{3}} +\boldsymbol{{ax}}^{\mathrm{2}} +\boldsymbol{{bx}}+\boldsymbol{{c}}\:\:\:\:{while}\:{the} \\ $$$${blue}\:{one}\:{is}\:{the}\:{same}\:{red} \\ $$$${one},\:{shifted}\:{such}\:{that}\:{two}\:{roots} \\ $$$${are}\:{still}\:{common},\:{find}\:{equation} \\ $$$${of}\:{the}\:{blue}\:{one}\:{in}\:{terms}\:{of} \\ $$$$\boldsymbol{{a}},\:\boldsymbol{{b}},\:\boldsymbol{{c}}.\boldsymbol{{x}},\:\boldsymbol{{y}}. \\ $$

Answered by mr W last updated on 02/May/20

y=x^3 +ax^2 +bx+c  with  p=((3b−a^2 )/9)  q=((2a^3 −9ab+27c)/(54))  and  p^3 +q^2 <0 (such that three real roots)  we get the three roots  α=2(√(−p)) sin ((1/3)sin^(−1) (q/(√(−p^3 )))−((2π)/3))−(a/3)  β=2(√(−p)) sin ((1/3)sin^(−1) (q/(√(−p^3 ))))−(a/3)  γ=2(√(−p)) sin ((1/3)sin^(−1) (q/(√(−p^3 )))+((2π)/3))−(a/3)    the eqn. of shifted cubic curve is  y−k=(x−h)^3 +a(x−h)^2 +b(x−h)+c  or  y=(x−h)^3 +a(x−h)^2 +b(x−h)+c+k  since β and γ are also its roots,  (β−h)^3 +a(β−h)^2 +b(β−h)+c+k=0  ..(i)  (γ−h)^3 +a(γ−h)^2 +b(γ−h)+c+k=0  ..(ii)  (i)−(ii):  3h^2 −[2a+3(β+γ)]h+[β^2 +γ^2 +βγ+a(β+γ)+b]=0    ⇒h=((2a+3(β+γ)+(√(4a^2 −12b−3(β−γ)^2 )))/6)  ⇒k=−(β−h)^3 −a(β−h)^2 −b(β−h)−c

$${y}={x}^{\mathrm{3}} +{ax}^{\mathrm{2}} +{bx}+{c} \\ $$$${with} \\ $$$${p}=\frac{\mathrm{3}{b}−{a}^{\mathrm{2}} }{\mathrm{9}} \\ $$$${q}=\frac{\mathrm{2}{a}^{\mathrm{3}} −\mathrm{9}{ab}+\mathrm{27}{c}}{\mathrm{54}} \\ $$$${and} \\ $$$${p}^{\mathrm{3}} +{q}^{\mathrm{2}} <\mathrm{0}\:\left({such}\:{that}\:{three}\:{real}\:{roots}\right) \\ $$$${we}\:{get}\:{the}\:{three}\:{roots} \\ $$$$\alpha=\mathrm{2}\sqrt{−{p}}\:\mathrm{sin}\:\left(\frac{\mathrm{1}}{\mathrm{3}}\mathrm{sin}^{−\mathrm{1}} \frac{{q}}{\sqrt{−{p}^{\mathrm{3}} }}−\frac{\mathrm{2}\pi}{\mathrm{3}}\right)−\frac{{a}}{\mathrm{3}} \\ $$$$\beta=\mathrm{2}\sqrt{−{p}}\:\mathrm{sin}\:\left(\frac{\mathrm{1}}{\mathrm{3}}\mathrm{sin}^{−\mathrm{1}} \frac{{q}}{\sqrt{−{p}^{\mathrm{3}} }}\right)−\frac{{a}}{\mathrm{3}} \\ $$$$\gamma=\mathrm{2}\sqrt{−{p}}\:\mathrm{sin}\:\left(\frac{\mathrm{1}}{\mathrm{3}}\mathrm{sin}^{−\mathrm{1}} \frac{{q}}{\sqrt{−{p}^{\mathrm{3}} }}+\frac{\mathrm{2}\pi}{\mathrm{3}}\right)−\frac{{a}}{\mathrm{3}} \\ $$$$ \\ $$$${the}\:{eqn}.\:{of}\:{shifted}\:{cubic}\:{curve}\:{is} \\ $$$${y}−{k}=\left({x}−{h}\right)^{\mathrm{3}} +{a}\left({x}−{h}\right)^{\mathrm{2}} +{b}\left({x}−{h}\right)+{c} \\ $$$${or} \\ $$$${y}=\left({x}−{h}\right)^{\mathrm{3}} +{a}\left({x}−{h}\right)^{\mathrm{2}} +{b}\left({x}−{h}\right)+{c}+{k} \\ $$$${since}\:\beta\:{and}\:\gamma\:{are}\:{also}\:{its}\:{roots}, \\ $$$$\left(\beta−{h}\right)^{\mathrm{3}} +{a}\left(\beta−{h}\right)^{\mathrm{2}} +{b}\left(\beta−{h}\right)+{c}+{k}=\mathrm{0}\:\:..\left({i}\right) \\ $$$$\left(\gamma−{h}\right)^{\mathrm{3}} +{a}\left(\gamma−{h}\right)^{\mathrm{2}} +{b}\left(\gamma−{h}\right)+{c}+{k}=\mathrm{0}\:\:..\left({ii}\right) \\ $$$$\left({i}\right)−\left({ii}\right): \\ $$$$\mathrm{3}{h}^{\mathrm{2}} −\left[\mathrm{2}{a}+\mathrm{3}\left(\beta+\gamma\right)\right]{h}+\left[\beta^{\mathrm{2}} +\gamma^{\mathrm{2}} +\beta\gamma+{a}\left(\beta+\gamma\right)+{b}\right]=\mathrm{0} \\ $$$$ \\ $$$$\Rightarrow{h}=\frac{\mathrm{2}{a}+\mathrm{3}\left(\beta+\gamma\right)+\sqrt{\mathrm{4}{a}^{\mathrm{2}} −\mathrm{12}{b}−\mathrm{3}\left(\beta−\gamma\right)^{\mathrm{2}} }}{\mathrm{6}} \\ $$$$\Rightarrow{k}=−\left(\beta−{h}\right)^{\mathrm{3}} −{a}\left(\beta−{h}\right)^{\mathrm{2}} −{b}\left(\beta−{h}\right)−{c} \\ $$

Commented by mr W last updated on 02/May/20

Commented by mr W last updated on 03/May/20

sir, please also have a look at Q91446.

$${sir},\:{please}\:{also}\:{have}\:{a}\:{look}\:{at}\:{Q}\mathrm{91446}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com