Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 91910 by Ar Brandon last updated on 03/May/20

∫((ln(1+sin^2 x))/(sin^2 x))dx

$$\int\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \mathrm{x}\right)}{\mathrm{sin}^{\mathrm{2}} \mathrm{x}}\mathrm{dx} \\ $$

Commented by mathmax by abdo last updated on 03/May/20

let f(a) =∫((ln(1+asin^2 x))/(sin^2 x))  with a>0  f^′ (a) =∫ln(1+asin^2 x)dx =∫ln(1+a×((1−cos(2x))/2))dx  =∫ ln(2+a−acos(2x))dx−xln(2)  =∫ln((2+a)(1−(a/(2+a))cos(2x))dx−xln(2)  =(ln(2+a)−ln2)x +∫ ln(1−(a/(a+2))cos(2x)) let determine  I_λ =∫ln(1−λcos(2x))dx  with 0<λ<1  (dI_λ /dλ)=−∫  ((cos(2x))/(1−λcos(2x)))dx =_(2x=t) (1/2)   ∫((cos(t))/(1−λcost))dt  =−(1/(2λ))∫  ((1−λcost −1)/(1−λcost))dt =−(1/(2λ)) t +(1/(2λ)) ∫  (dt/(1−λcost))  ∫ (dt/(1−λcost)) =_(tan((x/2))=u)    ∫  ((2du)/((1+u^2 )(1−λ((1−u^2 )/(1+u^2 )))))  =2 ∫   (du/(1+u^2 −λ +λu^2 )) =2 ∫  (du/((1+λ)u^2  +1−λ))  =(2/(1+λ)) ∫  (du/(u^2  +((1−λ)/(1+λ)))) =_(u=(√((1−λ)/(1+λ)))z)     (2/(1+λ)) ∫  (1/(((1−λ)/(1+λ))(1+z^2 )))×((√(1−λ))/(√(1+λ)))dz  =(2/(√(1−λ^2 )))×(π/2) =(π/(√(1−λ^2 ))) ⇒I ′_λ   =−(x/λ) +(π/(2λ(√(1−λ^2 )))) ⇒  I_λ =−xlnλ  +(π/2) ∫  (dλ/(λ(√(1−λ^2 )))) +C  ∫ (dλ/(λ(√(1−λ^2 )))) =_(λ=sint)    ∫  ((cost dt)/(sint cost)) =∫ (dt/(sint)) =_(tan((t/2))=u)   =∫ ((2du)/((1+u^2 )((2u)/(1+u^2 )))) =∫ (du/u) =ln∣u∣ =ln∣tan(((arcsinλ)/2))∣ ⇒  I_λ =−xlnλ +(π/2)ln∣tan(((arcsinλ)/2))∣ +C ⇒  f^′ (a) =xln(((2+a)/2))−xln((a/(a+2)))+(π/2)ln∣tan(((arcsin((a/(a+2))))/2))∣ +C  ⇒f(a) =x ∫(ln(((2+a)/2))−ln((a/(a+2)))∣+(π/2)∫ ln∣tan(((arcsin((a/(a+2))))/2)) +C  ....be continued....

$${let}\:{f}\left({a}\right)\:=\int\frac{{ln}\left(\mathrm{1}+{asin}^{\mathrm{2}} {x}\right)}{{sin}^{\mathrm{2}} {x}}\:\:{with}\:{a}>\mathrm{0} \\ $$$${f}^{'} \left({a}\right)\:=\int{ln}\left(\mathrm{1}+{asin}^{\mathrm{2}} {x}\right){dx}\:=\int{ln}\left(\mathrm{1}+{a}×\frac{\mathrm{1}−{cos}\left(\mathrm{2}{x}\right)}{\mathrm{2}}\right){dx} \\ $$$$=\int\:{ln}\left(\mathrm{2}+{a}−{acos}\left(\mathrm{2}{x}\right)\right){dx}−{xln}\left(\mathrm{2}\right) \\ $$$$=\int{ln}\left(\left(\mathrm{2}+{a}\right)\left(\mathrm{1}−\frac{{a}}{\mathrm{2}+{a}}{cos}\left(\mathrm{2}{x}\right)\right){dx}−{xln}\left(\mathrm{2}\right)\right. \\ $$$$=\left({ln}\left(\mathrm{2}+{a}\right)−{ln}\mathrm{2}\right){x}\:+\int\:{ln}\left(\mathrm{1}−\frac{{a}}{{a}+\mathrm{2}}{cos}\left(\mathrm{2}{x}\right)\right)\:{let}\:{determine} \\ $$$${I}_{\lambda} =\int{ln}\left(\mathrm{1}−\lambda{cos}\left(\mathrm{2}{x}\right)\right){dx}\:\:{with}\:\mathrm{0}<\lambda<\mathrm{1} \\ $$$$\frac{{dI}_{\lambda} }{{d}\lambda}=−\int\:\:\frac{{cos}\left(\mathrm{2}{x}\right)}{\mathrm{1}−\lambda{cos}\left(\mathrm{2}{x}\right)}{dx}\:=_{\mathrm{2}{x}={t}} \frac{\mathrm{1}}{\mathrm{2}}\:\:\:\int\frac{{cos}\left({t}\right)}{\mathrm{1}−\lambda{cost}}{dt} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}\lambda}\int\:\:\frac{\mathrm{1}−\lambda{cost}\:−\mathrm{1}}{\mathrm{1}−\lambda{cost}}{dt}\:=−\frac{\mathrm{1}}{\mathrm{2}\lambda}\:{t}\:+\frac{\mathrm{1}}{\mathrm{2}\lambda}\:\int\:\:\frac{{dt}}{\mathrm{1}−\lambda{cost}} \\ $$$$\int\:\frac{{dt}}{\mathrm{1}−\lambda{cost}}\:=_{{tan}\left(\frac{{x}}{\mathrm{2}}\right)={u}} \:\:\:\int\:\:\frac{\mathrm{2}{du}}{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)\left(\mathrm{1}−\lambda\frac{\mathrm{1}−{u}^{\mathrm{2}} }{\mathrm{1}+{u}^{\mathrm{2}} }\right)} \\ $$$$=\mathrm{2}\:\int\:\:\:\frac{{du}}{\mathrm{1}+{u}^{\mathrm{2}} −\lambda\:+\lambda{u}^{\mathrm{2}} }\:=\mathrm{2}\:\int\:\:\frac{{du}}{\left(\mathrm{1}+\lambda\right){u}^{\mathrm{2}} \:+\mathrm{1}−\lambda} \\ $$$$=\frac{\mathrm{2}}{\mathrm{1}+\lambda}\:\int\:\:\frac{{du}}{{u}^{\mathrm{2}} \:+\frac{\mathrm{1}−\lambda}{\mathrm{1}+\lambda}}\:=_{{u}=\sqrt{\frac{\mathrm{1}−\lambda}{\mathrm{1}+\lambda}}{z}} \:\:\:\:\frac{\mathrm{2}}{\mathrm{1}+\lambda}\:\int\:\:\frac{\mathrm{1}}{\frac{\mathrm{1}−\lambda}{\mathrm{1}+\lambda}\left(\mathrm{1}+{z}^{\mathrm{2}} \right)}×\frac{\sqrt{\mathrm{1}−\lambda}}{\sqrt{\mathrm{1}+\lambda}}{dz} \\ $$$$=\frac{\mathrm{2}}{\sqrt{\mathrm{1}−\lambda^{\mathrm{2}} }}×\frac{\pi}{\mathrm{2}}\:=\frac{\pi}{\sqrt{\mathrm{1}−\lambda^{\mathrm{2}} }}\:\Rightarrow{I}\:'_{\lambda} \:\:=−\frac{{x}}{\lambda}\:+\frac{\pi}{\mathrm{2}\lambda\sqrt{\mathrm{1}−\lambda^{\mathrm{2}} }}\:\Rightarrow \\ $$$${I}_{\lambda} =−{xln}\lambda\:\:+\frac{\pi}{\mathrm{2}}\:\int\:\:\frac{{d}\lambda}{\lambda\sqrt{\mathrm{1}−\lambda^{\mathrm{2}} }}\:+{C} \\ $$$$\int\:\frac{{d}\lambda}{\lambda\sqrt{\mathrm{1}−\lambda^{\mathrm{2}} }}\:=_{\lambda={sint}} \:\:\:\int\:\:\frac{{cost}\:{dt}}{{sint}\:{cost}}\:=\int\:\frac{{dt}}{{sint}}\:=_{{tan}\left(\frac{{t}}{\mathrm{2}}\right)={u}} \\ $$$$=\int\:\frac{\mathrm{2}{du}}{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)\frac{\mathrm{2}{u}}{\mathrm{1}+{u}^{\mathrm{2}} }}\:=\int\:\frac{{du}}{{u}}\:={ln}\mid{u}\mid\:={ln}\mid{tan}\left(\frac{{arcsin}\lambda}{\mathrm{2}}\right)\mid\:\Rightarrow \\ $$$${I}_{\lambda} =−{xln}\lambda\:+\frac{\pi}{\mathrm{2}}{ln}\mid{tan}\left(\frac{{arcsin}\lambda}{\mathrm{2}}\right)\mid\:+{C}\:\Rightarrow \\ $$$${f}^{'} \left({a}\right)\:={xln}\left(\frac{\mathrm{2}+{a}}{\mathrm{2}}\right)−{xln}\left(\frac{{a}}{{a}+\mathrm{2}}\right)+\frac{\pi}{\mathrm{2}}{ln}\mid{tan}\left(\frac{{arcsin}\left(\frac{{a}}{{a}+\mathrm{2}}\right)}{\mathrm{2}}\right)\mid\:+{C} \\ $$$$\Rightarrow{f}\left({a}\right)\:={x}\:\int\left({ln}\left(\frac{\mathrm{2}+{a}}{\mathrm{2}}\right)−{ln}\left(\frac{{a}}{{a}+\mathrm{2}}\right)\mid+\frac{\pi}{\mathrm{2}}\int\:{ln}\mid{tan}\left(\frac{{arcsin}\left(\frac{{a}}{{a}+\mathrm{2}}\right)}{\mathrm{2}}\right)\:+{C}\right. \\ $$$$....{be}\:{continued}.... \\ $$

Commented by Ar Brandon last updated on 03/May/20

�� thanks

Commented by mathmax by abdo last updated on 03/May/20

you are welcome

$${you}\:{are}\:{welcome} \\ $$

Commented by Ar Brandon last updated on 03/May/20

I got this. What do think ? ����

Commented by turbo msup by abdo last updated on 03/May/20

this is the way the probleme here  is thst integrsl is without limits...

$${this}\:{is}\:{the}\:{way}\:{the}\:{probleme}\:{here} \\ $$$${is}\:{thst}\:{integrsl}\:{is}\:{without}\:{limits}... \\ $$

Answered by Ar Brandon last updated on 03/May/20

Terms of Service

Privacy Policy

Contact: info@tinkutara.com