Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 91961 by jagoll last updated on 04/May/20

∫ cos^3 (2x) sin^3 (3x) dx

cos3(2x)sin3(3x)dx

Commented by mathmax by abdo last updated on 04/May/20

cos(2x)sin(3x) =cos(2x)cos((π/2)−3x)  =(1/2){cos(−x+(π/2))+cos(5x−(π/2))}  =(1/2){ sinx +sin(5x)} ⇒  cos^3 (2x)sin^3 (3x) =(1/8){sinx +sin(5x)}^3   =(1/8){ sin^3 x +3sin^2 x sin(5x)+3sinxsin^2 (5x) +sin^3 (5x)}  sin^3 x =sin^2 x sinx =((1−cos(2x))/2)sinx  =(1/2)sinx −(1/2) cos(2x)sinx  but  cos(2x)sinx =cos(2x)cos((π/2)−x)  =(1/2){ cos(x+(π/2))+cos(3x−(π/2))}  =(1/2){−sinx +sin(3x)} ⇒  sin^3 x =(1/2)sin(x)−(1/4)(−sinx +sin(3x))  =(3/4)sinx−(1/4)sin(3x) ⇒  8I = ∫ ((3/4)sinx−(1/4)sin(3x))dx +3∫ sin^2 x sin(5x)dx  +3 ∫ sinx sin^2 5x  +∫  ((3/4)sin(5x) −(1/4)sin(15x))dx  also  sin^2 x sin(5x) =(1/2)(1−cos(2x))sin(5x)  =(1/2)sin(5x)−(1/2)cos(2x)sin(5x) but   cos(2x)sin(5x) =cos(2x)cos((π/2)−5x)  =(1/2)(cos(−3x+(π/2))+cos(7x−(π/2)))  =(1/2)(sin(3x)+sin(7x)) now its eazy to solve the integral...

cos(2x)sin(3x)=cos(2x)cos(π23x)=12{cos(x+π2)+cos(5xπ2)}=12{sinx+sin(5x)}cos3(2x)sin3(3x)=18{sinx+sin(5x)}3=18{sin3x+3sin2xsin(5x)+3sinxsin2(5x)+sin3(5x)}sin3x=sin2xsinx=1cos(2x)2sinx=12sinx12cos(2x)sinxbutcos(2x)sinx=cos(2x)cos(π2x)=12{cos(x+π2)+cos(3xπ2)}=12{sinx+sin(3x)}sin3x=12sin(x)14(sinx+sin(3x))=34sinx14sin(3x)8I=(34sinx14sin(3x))dx+3sin2xsin(5x)dx+3sinxsin25x+(34sin(5x)14sin(15x))dxalsosin2xsin(5x)=12(1cos(2x))sin(5x)=12sin(5x)12cos(2x)sin(5x)butcos(2x)sin(5x)=cos(2x)cos(π25x)=12(cos(3x+π2)+cos(7xπ2))=12(sin(3x)+sin(7x))nowitseazytosolvetheintegral...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com