All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 91961 by jagoll last updated on 04/May/20
∫cos3(2x)sin3(3x)dx
Commented by mathmax by abdo last updated on 04/May/20
cos(2x)sin(3x)=cos(2x)cos(π2−3x)=12{cos(−x+π2)+cos(5x−π2)}=12{sinx+sin(5x)}⇒cos3(2x)sin3(3x)=18{sinx+sin(5x)}3=18{sin3x+3sin2xsin(5x)+3sinxsin2(5x)+sin3(5x)}sin3x=sin2xsinx=1−cos(2x)2sinx=12sinx−12cos(2x)sinxbutcos(2x)sinx=cos(2x)cos(π2−x)=12{cos(x+π2)+cos(3x−π2)}=12{−sinx+sin(3x)}⇒sin3x=12sin(x)−14(−sinx+sin(3x))=34sinx−14sin(3x)⇒8I=∫(34sinx−14sin(3x))dx+3∫sin2xsin(5x)dx+3∫sinxsin25x+∫(34sin(5x)−14sin(15x))dxalsosin2xsin(5x)=12(1−cos(2x))sin(5x)=12sin(5x)−12cos(2x)sin(5x)butcos(2x)sin(5x)=cos(2x)cos(π2−5x)=12(cos(−3x+π2)+cos(7x−π2))=12(sin(3x)+sin(7x))nowitseazytosolvetheintegral...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com