Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 91990 by Power last updated on 04/May/20

Commented by mathmax by abdo last updated on 04/May/20

I =∫ ((x^3 −6)/(x^4  +6x +8)) ⇒ I =(1/4)∫  ((4x^3 −24)/(x^4  +6x +8))dx ⇒  4I =∫((4x^3  +6 −30)/(x^4  +6x +8))dx =ln∣x^4  +6x +8∣−30 ∫  (dx/(x^4  +6x +8))  x^4  +6x +8 =0 the roots are   z_1 =1,2402 +1,6576i  (complex)  z_2 =1,2402 −1,6576i (complex)  z_3 =−1,2402 +0,5732i (complex)  z_4 =−1,2402 −0,5732i (complex)  let α =1,2402 and β =0,5732 ⇒z_1 =α +(1+β)i  z_2 =α−(1+β)i  z_3 =−α +βi      and z_4 =−α−βi ⇒  ∫  (dx/(x^4  +6x+8)) =∫  (dx/((x+α−βi)(x+α+βi)(x−α+(1+β)i)(x−α−(1+β)i)))  but  (x+α−βi)(x+α+βi) =(x−z_3 )(x−z_3 ^− )=x^2 −2Re(z_3 )x+∣z_3 ∣^2   =x^2 +2αx +α^2  +β^2   (x−z_1 )(x−z_2 ) =(x−z_1 )(x−z_1 ^− )=x^2  −2Re(z_1 )x +∣z_1 ∣^2   =x^2 −2α x +α^2  +(1+β)^2  ⇒  ∫  (dx/(x^4  +6x +8))  =∫   (dx/((x^2  +2αx +α^2  +β^2 )(x^2 −2αx +α^2 +(1+β)^2 )))  ...be continued....

$${I}\:=\int\:\frac{{x}^{\mathrm{3}} −\mathrm{6}}{{x}^{\mathrm{4}} \:+\mathrm{6}{x}\:+\mathrm{8}}\:\Rightarrow\:{I}\:=\frac{\mathrm{1}}{\mathrm{4}}\int\:\:\frac{\mathrm{4}{x}^{\mathrm{3}} −\mathrm{24}}{{x}^{\mathrm{4}} \:+\mathrm{6}{x}\:+\mathrm{8}}{dx}\:\Rightarrow \\ $$$$\mathrm{4}{I}\:=\int\frac{\mathrm{4}{x}^{\mathrm{3}} \:+\mathrm{6}\:−\mathrm{30}}{{x}^{\mathrm{4}} \:+\mathrm{6}{x}\:+\mathrm{8}}{dx}\:={ln}\mid{x}^{\mathrm{4}} \:+\mathrm{6}{x}\:+\mathrm{8}\mid−\mathrm{30}\:\int\:\:\frac{{dx}}{{x}^{\mathrm{4}} \:+\mathrm{6}{x}\:+\mathrm{8}} \\ $$$${x}^{\mathrm{4}} \:+\mathrm{6}{x}\:+\mathrm{8}\:=\mathrm{0}\:{the}\:{roots}\:{are}\: \\ $$$${z}_{\mathrm{1}} =\mathrm{1},\mathrm{2402}\:+\mathrm{1},\mathrm{6576}{i}\:\:\left({complex}\right) \\ $$$${z}_{\mathrm{2}} =\mathrm{1},\mathrm{2402}\:−\mathrm{1},\mathrm{6576}{i}\:\left({complex}\right) \\ $$$${z}_{\mathrm{3}} =−\mathrm{1},\mathrm{2402}\:+\mathrm{0},\mathrm{5732}{i}\:\left({complex}\right) \\ $$$${z}_{\mathrm{4}} =−\mathrm{1},\mathrm{2402}\:−\mathrm{0},\mathrm{5732}{i}\:\left({complex}\right) \\ $$$${let}\:\alpha\:=\mathrm{1},\mathrm{2402}\:{and}\:\beta\:=\mathrm{0},\mathrm{5732}\:\Rightarrow{z}_{\mathrm{1}} =\alpha\:+\left(\mathrm{1}+\beta\right){i} \\ $$$${z}_{\mathrm{2}} =\alpha−\left(\mathrm{1}+\beta\right){i} \\ $$$${z}_{\mathrm{3}} =−\alpha\:+\beta{i}\:\:\:\:\:\:{and}\:{z}_{\mathrm{4}} =−\alpha−\beta{i}\:\Rightarrow \\ $$$$\int\:\:\frac{{dx}}{{x}^{\mathrm{4}} \:+\mathrm{6}{x}+\mathrm{8}}\:=\int\:\:\frac{{dx}}{\left({x}+\alpha−\beta{i}\right)\left({x}+\alpha+\beta{i}\right)\left({x}−\alpha+\left(\mathrm{1}+\beta\right){i}\right)\left({x}−\alpha−\left(\mathrm{1}+\beta\right){i}\right)} \\ $$$${but}\:\:\left({x}+\alpha−\beta{i}\right)\left({x}+\alpha+\beta{i}\right)\:=\left({x}−{z}_{\mathrm{3}} \right)\left({x}−\overset{−} {{z}}_{\mathrm{3}} \right)={x}^{\mathrm{2}} −\mathrm{2}{Re}\left({z}_{\mathrm{3}} \right){x}+\mid{z}_{\mathrm{3}} \mid^{\mathrm{2}} \\ $$$$={x}^{\mathrm{2}} +\mathrm{2}\alpha{x}\:+\alpha^{\mathrm{2}} \:+\beta^{\mathrm{2}} \\ $$$$\left({x}−{z}_{\mathrm{1}} \right)\left({x}−{z}_{\mathrm{2}} \right)\:=\left({x}−{z}_{\mathrm{1}} \right)\left({x}−\overset{−} {{z}}_{\mathrm{1}} \right)={x}^{\mathrm{2}} \:−\mathrm{2}{Re}\left({z}_{\mathrm{1}} \right){x}\:+\mid{z}_{\mathrm{1}} \mid^{\mathrm{2}} \\ $$$$={x}^{\mathrm{2}} −\mathrm{2}\alpha\:{x}\:+\alpha^{\mathrm{2}} \:+\left(\mathrm{1}+\beta\right)^{\mathrm{2}} \:\Rightarrow \\ $$$$\int\:\:\frac{{dx}}{{x}^{\mathrm{4}} \:+\mathrm{6}{x}\:+\mathrm{8}}\:\:=\int\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+\mathrm{2}\alpha{x}\:+\alpha^{\mathrm{2}} \:+\beta^{\mathrm{2}} \right)\left({x}^{\mathrm{2}} −\mathrm{2}\alpha{x}\:+\alpha^{\mathrm{2}} +\left(\mathrm{1}+\beta\right)^{\mathrm{2}} \right)} \\ $$$$...{be}\:{continued}.... \\ $$

Commented by Power last updated on 04/May/20

thanks

$$\mathrm{thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com