All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 91990 by Power last updated on 04/May/20
Commented by mathmax by abdo last updated on 04/May/20
I=∫x3−6x4+6x+8⇒I=14∫4x3−24x4+6x+8dx⇒4I=∫4x3+6−30x4+6x+8dx=ln∣x4+6x+8∣−30∫dxx4+6x+8x4+6x+8=0therootsarez1=1,2402+1,6576i(complex)z2=1,2402−1,6576i(complex)z3=−1,2402+0,5732i(complex)z4=−1,2402−0,5732i(complex)letα=1,2402andβ=0,5732⇒z1=α+(1+β)iz2=α−(1+β)iz3=−α+βiandz4=−α−βi⇒∫dxx4+6x+8=∫dx(x+α−βi)(x+α+βi)(x−α+(1+β)i)(x−α−(1+β)i)but(x+α−βi)(x+α+βi)=(x−z3)(x−z−3)=x2−2Re(z3)x+∣z3∣2=x2+2αx+α2+β2(x−z1)(x−z2)=(x−z1)(x−z−1)=x2−2Re(z1)x+∣z1∣2=x2−2αx+α2+(1+β)2⇒∫dxx4+6x+8=∫dx(x2+2αx+α2+β2)(x2−2αx+α2+(1+β)2)...becontinued....
Commented by Power last updated on 04/May/20
thanks
Terms of Service
Privacy Policy
Contact: info@tinkutara.com