All Questions Topic List
Others Questions
Previous in All Question Next in All Question
Previous in Others Next in Others
Question Number 92025 by 675480065 last updated on 04/May/20
∫(x−1x2−x−1)dx
Commented by mathmax by abdo last updated on 04/May/20
I=∫x−1x2−x−1dx⇒I=12∫2x−1−1x2−x−1dx=12∫2x−1x2−x−1dx−12∫dxx2−x−1wehave∫2x−1x2−x−1dx=ln∣x2−x−1∣+c0x2−x−1=0→Δ=1+4=5⇒x1=1+52andx2=1−52⇒∫dxx2−x−1=∫dx(x−1+52)(x−1−52)=∫15{1x−1+52−1x−1−52}dx=15ln∣x−1+52x−1−52∣+c1=15ln∣2x−1−52x−1+5∣+c1⇒I=12ln∣x2−x−1∣−125ln∣2x−1−52x−1+5∣+C
Answered by niroj last updated on 04/May/20
∫x−1x2−x−1dx=12∫2x−1−1x2−x−1dx=12∫2x−1x2−x−1dx−12∫1x2−x−1dx=12log(x2−x−1)+12∫1x2−2x.12+14−14−1dx+C=log(x2−x−1)12+12∫1(x−12)2−(52)2dx+C=logx2−x−1+12[12.52logx−12−52x−12+52]+C=logx2−x−1+125log2x−1−52x−1+5+C=logx2−x−1+510log2x−1−52x−1+5+C//.
Answered by MJS last updated on 04/May/20
∫x−1x2−x−1dx==∫5+55(2x−1+5)dx+∫5−55(2x−1−5)dx==5+510ln(2x−1+5)+5−510ln(2x−1−5)+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com