Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 92040 by mhmd last updated on 04/May/20

y^(′′) +(y′)^2 +y=0   y(0)=−(1/2) , y′(0)=−1  help me sir

$${y}^{''} +\left({y}'\right)^{\mathrm{2}} +{y}=\mathrm{0}\:\:\:{y}\left(\mathrm{0}\right)=−\frac{\mathrm{1}}{\mathrm{2}}\:,\:{y}'\left(\mathrm{0}\right)=−\mathrm{1} \\ $$$${help}\:{me}\:{sir}\: \\ $$

Answered by mr W last updated on 04/May/20

let u=y′=(dy/dx)  y′′=(du/dx)=(du/dy)×(dy/dx)=u(du/dy)  u(du/dy)+u^2 +y=0  (1/2)((d(u^2 ))/dy)+u^2 +y=0  let U=u^2   (1/2)(dU/dy)+U+y=0  (dU/dy)+2U=−2y  U=((−∫2ye^(∫2dy) dy+C)/e^(∫2fy) )  U=((−∫2ye^(2y) dy+C)/e^(2y) )  U=((−ye^(2y) +∫e^(2y) dy+C)/e^(2y) )  U=((−ye^(2y) +(1/2)e^(2y) +C)/e^(2y) )  U=((1−2y+C_1 e^(−2y) )/2)=u^2 =((dy/dx))^2   (dy/dx)=±((√(1−2y+C_1 e^(−2y) ))/(√2))  −1=±((√(2+C_1 e))/(√2))  ⇒C_1 =0  (dy/(√(1−2y)))=−(dx/(√2))  x=−(√2)∫(dy/(√(1−2y)))+C_2   x=(√(2(1−2y)))+C_2   0=(√(2(1+1)))+C_2   ⇒C_2 =−2  ⇒x=(√(2(1−2y)))−2  or  ⇒y=(1/2)−(1/4)(x+2)^2

$${let}\:{u}={y}'=\frac{{dy}}{{dx}} \\ $$$${y}''=\frac{{du}}{{dx}}=\frac{{du}}{{dy}}×\frac{{dy}}{{dx}}={u}\frac{{du}}{{dy}} \\ $$$${u}\frac{{du}}{{dy}}+{u}^{\mathrm{2}} +{y}=\mathrm{0} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\frac{{d}\left({u}^{\mathrm{2}} \right)}{{dy}}+{u}^{\mathrm{2}} +{y}=\mathrm{0} \\ $$$${let}\:{U}={u}^{\mathrm{2}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\frac{{dU}}{{dy}}+{U}+{y}=\mathrm{0} \\ $$$$\frac{{dU}}{{dy}}+\mathrm{2}{U}=−\mathrm{2}{y} \\ $$$${U}=\frac{−\int\mathrm{2}{ye}^{\int\mathrm{2}{dy}} {dy}+{C}}{{e}^{\int\mathrm{2}{fy}} } \\ $$$${U}=\frac{−\int\mathrm{2}{ye}^{\mathrm{2}{y}} {dy}+{C}}{{e}^{\mathrm{2}{y}} } \\ $$$${U}=\frac{−{ye}^{\mathrm{2}{y}} +\int{e}^{\mathrm{2}{y}} {dy}+{C}}{{e}^{\mathrm{2}{y}} } \\ $$$${U}=\frac{−{ye}^{\mathrm{2}{y}} +\frac{\mathrm{1}}{\mathrm{2}}{e}^{\mathrm{2}{y}} +{C}}{{e}^{\mathrm{2}{y}} } \\ $$$${U}=\frac{\mathrm{1}−\mathrm{2}{y}+{C}_{\mathrm{1}} {e}^{−\mathrm{2}{y}} }{\mathrm{2}}={u}^{\mathrm{2}} =\left(\frac{{dy}}{{dx}}\right)^{\mathrm{2}} \\ $$$$\frac{{dy}}{{dx}}=\pm\frac{\sqrt{\mathrm{1}−\mathrm{2}{y}+{C}_{\mathrm{1}} {e}^{−\mathrm{2}{y}} }}{\sqrt{\mathrm{2}}} \\ $$$$−\mathrm{1}=\pm\frac{\sqrt{\mathrm{2}+{C}_{\mathrm{1}} {e}}}{\sqrt{\mathrm{2}}} \\ $$$$\Rightarrow{C}_{\mathrm{1}} =\mathrm{0} \\ $$$$\frac{{dy}}{\sqrt{\mathrm{1}−\mathrm{2}{y}}}=−\frac{{dx}}{\sqrt{\mathrm{2}}} \\ $$$${x}=−\sqrt{\mathrm{2}}\int\frac{{dy}}{\sqrt{\mathrm{1}−\mathrm{2}{y}}}+{C}_{\mathrm{2}} \\ $$$${x}=\sqrt{\mathrm{2}\left(\mathrm{1}−\mathrm{2}{y}\right)}+{C}_{\mathrm{2}} \\ $$$$\mathrm{0}=\sqrt{\mathrm{2}\left(\mathrm{1}+\mathrm{1}\right)}+{C}_{\mathrm{2}} \\ $$$$\Rightarrow{C}_{\mathrm{2}} =−\mathrm{2} \\ $$$$\Rightarrow{x}=\sqrt{\mathrm{2}\left(\mathrm{1}−\mathrm{2}{y}\right)}−\mathrm{2} \\ $$$${or} \\ $$$$\Rightarrow{y}=\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{4}}\left({x}+\mathrm{2}\right)^{\mathrm{2}} \\ $$

Commented by mr W last updated on 04/May/20

check:  y(0)=(1/2)−1=−(1/2)  y′=−((x+2)/2)=−1−(x/2)  y′(0)=−1  y′′=−(1/2)  y′′+(y′)^2 +y=−(1/2)+(((x+2)^2 )/4)+(1/2)−(((x+2)^2 )/4)=0

$${check}: \\ $$$${y}\left(\mathrm{0}\right)=\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${y}'=−\frac{{x}+\mathrm{2}}{\mathrm{2}}=−\mathrm{1}−\frac{{x}}{\mathrm{2}} \\ $$$${y}'\left(\mathrm{0}\right)=−\mathrm{1} \\ $$$${y}''=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${y}''+\left({y}'\right)^{\mathrm{2}} +{y}=−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\left({x}+\mathrm{2}\right)^{\mathrm{2}} }{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{2}}−\frac{\left({x}+\mathrm{2}\right)^{\mathrm{2}} }{\mathrm{4}}=\mathrm{0} \\ $$

Commented by niroj last updated on 04/May/20

��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com