Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 92078 by mathmax by abdo last updated on 04/May/20

calculate ∫_(−∞) ^(+∞)  ((cos(arctan(2x+1)))/(x^2 +x+1))dx

calculate+cos(arctan(2x+1))x2+x+1dx

Commented by abdomathmax last updated on 09/May/20

I =∫_(−∞) ^(+∞)  ((cos(arctan(2x+1))dx)/(x^2  +x+1))   I =Re(∫_(−∞) ^(+∞)  (e^(iarctan(2x+1)) /(x^2  +x+1))dx) let ϕ(z) =(e^(iarctan(2z+1)) /(z^2  +z+1))  poles of ϕ?   z^2  +z+1 =0 →Δ=−3 ⇒  z_1 =((−1+i(√3))/2) =e^(i((2π)/3))    and z_2 =((−1−i(√3))/2) =e^(−((i2π)/3))   residus theorem give ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,e^((i2π)/3) )  Res(ϕ,e^((i2π)/3) ) =(e^(iarctan(2 z_1 +1)) /((z_1 −z_2 ))) =(e^(iarctan(2e^((i2π)/3) +1)) /(2i×((√3)/2))) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =((2π)/(√3)) e^(i arctan(2e^((i2π)/3)  +1))   we know  arctan(z) =(1/(2i))ln(((1+iz)/(1−iz)))  2e^((i2π)/3)  +1 =2(−(1/2)+i((√3)/2))+1 =i(√3) ⇒  arctan(...) =arctan(i(√3)) =(1/(2i))ln(((1+i(i(√3)))/(1−i(i(√3)))))  =(1/(2i))ln(((1−(√3))/(1+(√3)))) =(1/(2i))ln(−1) +(1/(2i))ln((((√3)−1)/((√3)+1)))  =((iπ)/(2i)) +(1/(2i))ln((((√3)−1)/((√3)+1))) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =((2π)/(√3))((π/2)+(1/(2i))ln((((√3)−1)/((√3)+1))))  =(π^2 /(√3)) +−((iπ)/(√3))ln((((√3)−1)/((√3)+1)))   I =Re(∫_(−∞) ^(+∞)  ϕ(z)dz ) =(π^2 /(√3))

I=+cos(arctan(2x+1))dxx2+x+1I=Re(+eiarctan(2x+1)x2+x+1dx)letφ(z)=eiarctan(2z+1)z2+z+1polesofφ?z2+z+1=0Δ=3z1=1+i32=ei2π3andz2=1i32=ei2π3residustheoremgive+φ(z)dz=2iπRes(φ,ei2π3)Res(φ,ei2π3)=eiarctan(2z1+1)(z1z2)=eiarctan(2ei2π3+1)2i×32+φ(z)dz=2π3eiarctan(2ei2π3+1)weknowarctan(z)=12iln(1+iz1iz)2ei2π3+1=2(12+i32)+1=i3arctan(...)=arctan(i3)=12iln(1+i(i3)1i(i3))=12iln(131+3)=12iln(1)+12iln(313+1)=iπ2i+12iln(313+1)+φ(z)dz=2π3(π2+12iln(313+1))=π23+iπ3ln(313+1)I=Re(+φ(z)dz)=π23

Commented by Ar Brandon last updated on 09/May/20

nice

Terms of Service

Privacy Policy

Contact: info@tinkutara.com