All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 92078 by mathmax by abdo last updated on 04/May/20
calculate∫−∞+∞cos(arctan(2x+1))x2+x+1dx
Commented by abdomathmax last updated on 09/May/20
I=∫−∞+∞cos(arctan(2x+1))dxx2+x+1I=Re(∫−∞+∞eiarctan(2x+1)x2+x+1dx)letφ(z)=eiarctan(2z+1)z2+z+1polesofφ?z2+z+1=0→Δ=−3⇒z1=−1+i32=ei2π3andz2=−1−i32=e−i2π3residustheoremgive∫−∞+∞φ(z)dz=2iπRes(φ,ei2π3)Res(φ,ei2π3)=eiarctan(2z1+1)(z1−z2)=eiarctan(2ei2π3+1)2i×32⇒∫−∞+∞φ(z)dz=2π3eiarctan(2ei2π3+1)weknowarctan(z)=12iln(1+iz1−iz)2ei2π3+1=2(−12+i32)+1=i3⇒arctan(...)=arctan(i3)=12iln(1+i(i3)1−i(i3))=12iln(1−31+3)=12iln(−1)+12iln(3−13+1)=iπ2i+12iln(3−13+1)⇒∫−∞+∞φ(z)dz=2π3(π2+12iln(3−13+1))=π23+−iπ3ln(3−13+1)I=Re(∫−∞+∞φ(z)dz)=π23
Commented by Ar Brandon last updated on 09/May/20
nice
Terms of Service
Privacy Policy
Contact: info@tinkutara.com